File size: 4,727 Bytes
625a17f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
import argparse
import json
import tqdm
import cv2
import os
import numpy as np
import random
from pycocotools.mask import encode, decode, frPyObjects
EVALMODE = "test"
def fuse_mask(mask_list):
fused_mask = np.zeros_like(mask_list[0])
for mask in mask_list:
fused_mask[mask == 1] = 1
return fused_mask
def blend_mask(input_img, binary_mask, alpha=0.5, color="g"):
if input_img.ndim == 2:
return input_img
mask_image = np.zeros(input_img.shape, np.uint8)
if color == "r":
mask_image[:, :, 0] = 255
if color == "g":
mask_image[:, :, 1] = 255
if color == "b":
mask_image[:, :, 2] = 255
if color == "o":
mask_image[:, :, 0] = 255
mask_image[:, :, 1] = 165
mask_image[:, :, 2] = 0
if color == "c":
mask_image[:, :, 0] = 0
mask_image[:, :, 1] = 255
mask_image[:, :, 2] = 255
if color == "p":
mask_image[:, :, 0] = 128
mask_image[:, :, 1] = 0
mask_image[:, :, 2] = 128
mask_image = mask_image * np.repeat(binary_mask[:, :, np.newaxis], 3, axis=2)
blend_image = input_img[:, :, :].copy()
pos_idx = binary_mask > 0
for ind in range(input_img.ndim):
ch_img1 = input_img[:, :, ind]
ch_img2 = mask_image[:, :, ind]
ch_img3 = blend_image[:, :, ind]
ch_img3[pos_idx] = alpha * ch_img1[pos_idx] + (1 - alpha) * ch_img2[pos_idx]
blend_image[:, :, ind] = ch_img3
return blend_image
def upsample_mask(mask, frame):
H, W = frame.shape[:2]
mH, mW = mask.shape[:2]
if W > H:
ratio = mW / W
h = H * ratio
diff = int((mH - h) // 2)
if diff == 0:
mask = mask
else:
mask = mask[diff:-diff]
else:
ratio = mH / H
w = W * ratio
diff = int((mW - w) // 2)
if diff == 0:
mask = mask
else:
mask = mask[:, diff:-diff]
mask = cv2.resize(mask, (W, H))
return mask
def downsample(mask, frame):
H, W = frame.shape[:2]
mH, mW = mask.shape[:2]
mask = cv2.resize(mask, (W, H))
return mask
if __name__ == "__main__":
color = ['g', 'r', 'b', 'o', 'c', 'p']
data_path = "/data/work-gcp-europe-west4-a/yuqian_fu/datasets/HANDAL"
json_path = "/data/work-gcp-europe-west4-a/yuqian_fu/datasets/HANDAL_results/xmem_handal.json" #debug
output_path = "/data/work-gcp-europe-west4-a/yuqian_fu/datasets/HANDAL/vis_rondom_check/xmem"
with open(json_path, "r") as fp:
datas = json.load(fp)
# datas = random.sample(datas, 10)
for data in datas:
video_name = data["image"].split("/")[0]
name = data["image"].split("/")[-1]
frame_idx = name.split(".")[0]
#target gt
frame_target = cv2.imread(
f"{data_path}/{data['image']}"
)
# for check xmem predicted result
mask = decode(data["pred_mask"])
mask = downsample(mask, frame_target)
out = blend_mask(frame_target, mask, color=color[0])
os.makedirs(
f"{output_path}/xmem", #debug
exist_ok=True,
)
cv2.imwrite(
f"{output_path}/xmem/{frame_idx}.jpg", #debug
out,
)
# for check handal original json
# for i,ann in enumerate(data["anns"]):
# mask = decode(ann["segmentation"])
# mask = downsample(mask, frame_target)
# out = blend_mask(frame_target, mask, color=color[0])
# os.makedirs(
# f"{output_path}/{video_name}/target_gt", #debug
# exist_ok=True,
# )
# cv2.imwrite(
# f"{output_path}/{video_name}/target_gt/{frame_idx}.jpg", #debug
# out,
# )
# #query gt
# frame_query = cv2.imread(
# f"{data_path}/{data['first_frame_image']}"
# )
# for i,ann in enumerate(data["first_frame_anns"]):
# mask = decode(ann["segmentation"])
# mask = downsample(mask, frame_query)
# out = blend_mask(frame_query, mask, color=color[0])
# os.makedirs(
# f"{output_path}/{video_name}/query_gt", #debug
# exist_ok=True,
# )
# cv2.imwrite(
# f"{output_path}/{video_name}/query_gt/{frame_idx}.jpg", #debug
# out,
# )
|