File size: 4,998 Bytes
625a17f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import json
import cv2
import numpy as np
from pathlib import Path
import os
from PIL import Image


if __name__ == "__main__":
    '''get frame_id'''
    # with open("/scratch/yuqian_fu/egoexo_val_framelevel_newprompt_all_instruction.json") as f:
    #     data = json.load(f)
    
    # data_new = []
    # for item in data:
    #     if item['video_name'] == "1247a29c-9fda-47ac-8b9c-78b1e76e977e":
    #         data_new.append(item)

    # test_sample = data_new[0]
    # print(test_sample['new_img_id'])

    '''vis_mask'''
    def upsample_mask(mask, frame):
        H, W = frame.shape[:2]
        mH, mW = mask.shape[:2]

        if W > H:
            ratio = mW / W
            h = H * ratio
            diff = int((mH - h) // 2)
            if diff == 0:
                mask = mask
            else:
                mask = mask[diff:-diff]
        else:
            ratio = mH / H
            w = W * ratio
            diff = int((mW - w) // 2)
            if diff == 0:
                mask = mask
            else:
                mask = mask[:, diff:-diff]

        mask = cv2.resize(mask, (W, H))
        return mask

    def blend_mask(input_img, binary_mask, alpha=0.5, color="g"):
        if input_img.ndim == 2:
            return input_img
        mask_image = np.zeros(input_img.shape, np.uint8)
        if color == "r":
            mask_image[:, :, 0] = 255
        if color == "g":
            mask_image[:, :, 1] = 255
        if color == "b":
            mask_image[:, :, 2] = 255
        if color == "o":
            mask_image[:, :, 0] = 255
            mask_image[:, :, 1] = 165
            mask_image[:, :, 2] = 0
        if color == "c":
            mask_image[:, :, 0] = 0
            mask_image[:, :, 1] = 255
            mask_image[:, :, 2] = 255
        if color == "p":
            mask_image[:, :, 0] = 128
            mask_image[:, :, 1] = 0
            mask_image[:, :, 2] = 128

        mask_image = mask_image * np.repeat(binary_mask[:, :, np.newaxis], 3, axis=2)
        blend_image = input_img[:, :, :].copy()
        pos_idx = binary_mask > 0
        for ind in range(input_img.ndim):
            ch_img1 = input_img[:, :, ind]
            ch_img2 = mask_image[:, :, ind]
            ch_img3 = blend_image[:, :, ind]
            ch_img3[pos_idx] = alpha * ch_img1[pos_idx] + (1 - alpha) * ch_img2[pos_idx]
            blend_image[:, :, ind] = ch_img3
        return blend_image

    mask_path = "/scratch/yuqian_fu/test_result/mask/1247a29c-9fda-47ac-8b9c-78b1e76e977e_ref/30_pred_complex_ego_watch.png"
    img_path = "/scratch/yuqian_fu/test_data/1247a29c-9fda-47ac-8b9c-78b1e76e977e/aria01_214-1/30.jpg"
    mask = Image.open(mask_path)
    mask = np.array(mask)
    print(mask.shape)
    mask2 = cv2.imread(mask_path)
    print(type(mask2), mask2.shape)
    frame = cv2.imread(img_path)

    unique_instances = np.unique(mask)
    unique_instances = unique_instances[unique_instances != 0]
    if len(unique_instances) != 0:
        for i,instance in enumerate(unique_instances):
            binary_mask = (mask == instance).astype(np.uint8)
            binary_mask = cv2.resize(binary_mask, (frame.shape[1], frame.shape[0]))
            binary_mask = upsample_mask(binary_mask, frame)
            out = blend_mask(frame, binary_mask, color="g")
            save_path = "/scratch/yuqian_fu/test_result/img/1247a29c-9fda-47ac-8b9c-78b1e76e977e_ref/30_pred_complex_ego_watch.jpg"
            Path(os.path.dirname(save_path)).mkdir(parents=True, exist_ok=True)
            cv2.imwrite(save_path, out)


    '''change insttruction'''
    # with open("/scratch/yuqian_fu/egoexo_val_framelevel_newprompt_all_instruction.json") as f:
    #     data = json.load(f)
    
    # data_new = []
    # for item in data:
    #     if item['video_name'] == "1247a29c-9fda-47ac-8b9c-78b1e76e977e":
    #         data_new.append(item)

    # test_sample = data_new[0]
    # # print(test_sample['new_img_id'])
    # # print(test_sample['image'])
    # # print(test_sample['instruction'])

    # instruction_list = []
    # sample = {
    #         "tokens": ['the', 'ball'],
    #         "raw": "the ball.",
    #         "sent_id": 2203,
    #         "sent": "the ball"
    # }
    # image_info = {
    #             'file_name': test_sample['first_frame_image'],
    #             'height': 704,
    #             'width': 704,
    #         }
    # instruction_list.append(sample)
    # to_save = {
    #     "image":test_sample['first_frame_image'],
    #     "image_info":image_info,
    #     "anns":test_sample['first_frame_anns'],
    #     "first_frame_image":test_sample['first_frame_image'],
    #     "first_frame_anns":test_sample['first_frame_anns'],
    #     "new_img_id":test_sample['new_img_id'],
    #     "video_name":test_sample['video_name'],
    #     "instruction":instruction_list
    # }
    # save_path = "/scratch/yuqian_fu/sample_instruction_ego.json"
    # with open(save_path, "w") as f:
    #     json.dump([to_save], f)