--- license: apache-2.0 frameworks: - pytorch tags: - medical tasks: - image-text-to-text ---

Hulu-Med: A Transparent Generalist Model towards Holistic Medical Vision-Language Understanding

[![Paper](https://img.shields.io/badge/Paper-arXiv-red)](https://arxiv.org/abs/2510.08668) [![HuggingFace](https://img.shields.io/badge/🤗%20Hugging%20Face-Models-yellow)](https://huggingface.co/ZJU-AI4H/Hulu-Med) [![ModelScope](https://img.shields.io/badge/ModelScope-Models-blue)](https://modelscope.cn/models/Med-Team/Hulu-Med) [![License](https://img.shields.io/badge/License-Apache%202.0-green.svg)](LICENSE) [📄 Paper](http://arxiv.org/abs/2510.08668) | [🤗 Hulu-Med-7B](https://huggingface.co/ZJU-AI4H/Hulu-Med-7B) |[🤗 Hulu-Med-14B](https://huggingface.co/ZJU-AI4H/Hulu-Med-14B) |[🤗 Hulu-Med-32B](https://huggingface.co/ZJU-AI4H/Hulu-Med-32B) | [🔮 ModelScope Models](https://modelscope.cn/models/Med-Team/Hulu-Med) | [📊 Demo](#demo)
## 🔥 News - **[2025-10-08]** Hulu-Med models and inference code released! ## 📖 Overview **Hulu-Med** is a transparent medical vision-language model that unifies understanding across diverse modalities including **medical text, 2D/3D images, and videos**. Built with a focus on transparency and accessibility, Hulu-Med achieves state-of-the-art performance on 30 medical benchmarks while being trained entirely on public data. ### Key Features - 🌟 **Holistic Multimodal Understanding**: Seamlessly processes medical text, 2D images, 3D volumes, and surgical videos - 🔓 **Fully Transparent**: Complete open-source pipeline including data curation, training code, and model weights - 📊 **State-of-the-Art Performance**: Outperforms leading open-source models and competes with proprietary systems - ⚡ **Efficient Training**: Only 4,000-40,000 GPU hours required for 7B-32B variants - 🗂️ **Comprehensive Coverage**: Trained on 16.7M samples spanning 12 anatomical systems and 14 imaging modalities ### Comprehensive Data Coverage Our training corpus encompasses: - **12 Major Anatomical Systems**: Multi-System, Skin/Integumentary, Respiratory, Cellular/Tissue Level, Digestive, Nervous, Cardiovascular, Musculoskeletal, Reproductive, Urinary, Whole Body, Endocrine, Immune/Lymphatic, and Hematologic systems - **14 Medical Imaging Modalities**: CT, MRI, X-Ray, Ultrasound, PET, OCT, Endoscopy, Microscopy, Histopathology, Fundus, Dermoscopy, Angiography, Digital Photograph, and Medical Chart - **Diverse Downstream Tasks**: Medical Dialogue, Anomaly Detection, Prognosis Prediction, Treatment Planning, Surgical Skill Assessment, Education, Medical Report Generation, Surgical Phase Recognition, Medical Computation, and more ## 🏆 Performance Highlights ### Medical Multimodal Benchmarks Performance comparison on medical multimodal benchmarks (For the 'Medical VLM < 10B' subgroup, **bold** indicates the best method): | Models | OM.VQA | PMC-VQA | VQA-RAD | SLAKE | PathVQA | MedXQA | MMMU-Med | |--------|--------|---------|---------|-------|---------|--------|----------| | **Proprietary Models** | | GPT-4.1 | 75.5 | 55.2 | 65.0 | 72.2 | 55.5 | 45.2 | 75.2 | | GPT-4o | 67.5 | 49.7 | 61.0 | 71.2 | 55.5 | 44.3 | 62.8 | | Claude Sonnet 4 | 65.5 | 54.4 | 67.6 | 70.6 | 54.2 | 43.3 | 74.6 | | Gemini-2.5-Flash | 71.0 | 55.4 | 68.5 | 75.8 | 55.4 | 52.8 | 76.9 | | **General VLMs (< 10B)** | | Qwen2.5VL-7B | 63.6 | 51.9 | 63.2 | 66.8 | 44.1 | 20.1 | 50.6 | | InternVL2.5-8B | 81.3 | 51.3 | 59.4 | 69.0 | 42.1 | 21.7 | 53.5 | | InternVL3-8B | 79.1 | 53.8 | 65.4 | 72.8 | 48.6 | 22.4 | 59.2 | | **General VLMs (> 10B)** | | InternVL3-14B | 78.9 | 54.1 | 66.3 | 72.8 | 48.0 | 23.1 | 63.1 | | Qwen2.5V-32B | 68.2 | 54.5 | 71.8 | 71.2 | 41.9 | 25.2 | 59.6 | | InternVL3-38B | 79.8 | 56.6 | 65.4 | 72.7 | 51.0 | 25.2 | 65.2 | | **Medical VLMs (< 10B)** | | LLaVA-Med-7B | 34.8 | 22.7 | 46.6 | 51.9 | 35.2 | 20.8 | 28.1 | | MedGemma-4B | 70.7 | 49.2 | 72.3 | 78.2 | 48.1 | 25.4 | 43.2 | | HuatuoGPT-V-7B | 74.3 | 53.1 | 67.6 | 68.1 | 44.8 | 23.2 | 49.8 | | Lingshu-7B | 82.9 | 56.3 | 67.9 | 83.1 | 61.9 | 26.7 | - | | **Hulu-Med-7B** | **84.2** | **66.8** | **78.0** | **86.8** | **65.6** | **29.0** | **51.4** | | **Medical VLMs (> 10B)** | | HealthGPT-14B | 75.2 | 56.4 | 65.0 | 66.1 | 56.7 | 24.7 | 49.6 | | HuatuoGPT-V-34B | 74.0 | 56.6 | 61.4 | 69.5 | 44.4 | 22.1 | 51.8 | | Lingshu-32B | 83.4 | 57.9 | 76.7 | 86.7 | 65.5 | 30.9 | - | | **Hulu-Med-14B** | **85.1** | **68.9** | **76.1** | **86.5** | **64.4** | **30.0** | **54.8** | | **Hulu-Med-32B** | **84.6** | **69.4** | **81.4** | **85.7** | **67.3** | **34.0** | **60.4** | ### Medical Text Benchmarks Performance comparison on medical text benchmarks (**bold** indicates the best method in each subgroup): | Models | MMLU-Pro | MedXQA | Medbullets | SGPQA | PubMedQA | MedMCQA | MedQA | MMLU-Med | |--------|----------|--------|------------|-------|----------|---------|-------|----------| | **Proprietary Models** | | GPT-4.1 | 78.0 | 30.9 | 77.0 | 49.9 | 75.6 | 77.7 | 89.1 | 89.6 | | o3-mini | 78.1 | 35.4 | 83.7 | 50.1 | 73.6 | 60.6 | 74.5 | 87.0 | | Claude Sonnet 4 | 79.5 | 33.6 | 80.2 | 56.3 | 78.6 | 79.3 | 92.1 | 91.3 | | Gemini-2.5-Flash | 70.0 | 35.6 | 77.6 | 53.3 | 73.8 | 73.6 | 91.2 | 84.2 | | **General VLMs (< 10B)** | | Qwen2.5VL-7B | 50.5 | 12.8 | 42.1 | 26.3 | 76.4 | 52.6 | 57.3 | 73.4 | | InternVL2.5-8B | 50.6 | 11.6 | 42.4 | 26.1 | 76.4 | 52.4 | 53.7 | 74.2 | | InternVL3-8B | 57.9 | 13.1 | 48.5 | 31.2 | 75.4 | 57.7 | 62.1 | 77.5 | | **General VLMs (> 10B)** | | Qwen2.5VL-32B | 66.5 | 15.6 | 54.2 | 37.6 | 68.4 | 63.0 | 71.6 | 83.2 | | InternVL3-14B | 65.4 | 14.1 | 49.5 | 37.9 | 77.2 | 62.0 | 70.1 | 81.7 | | InternVL3-38B | 72.1 | 16.0 | 54.6 | 42.5 | 73.2 | 64.9 | 73.5 | 83.8 | | **Medical VLMs (< 10B)** | | LLaVA-Med-7B | 16.6 | 9.9 | 34.4 | 16.1 | 26.4 | 39.4 | 42.0 | 50.6 | | MedGemma-4B | 38.6 | 12.8 | 45.6 | 21.6 | 72.2 | 52.2 | 56.2 | 66.7 | | HuatuoGPT-V-7B | 44.6 | 10.1 | 40.9 | 21.9 | 72.8 | 51.2 | 52.9 | 69.3 | | Lingshu-7B | 50.4 | 16.5 | 56.2 | 26.3 | 76.6 | 55.9 | 63.3 | 74.5 | | **Hulu-Med-7B** | **60.6** | **19.6** | **61.5** | **31.1** | **77.4** | **67.6** | **73.5** | **79.5** | | **Medical VLMs (> 10B)** | | HealthGPT-14B | 63.4 | 11.3 | 39.8 | 25.7 | 68.0 | 63.4 | 66.2 | 80.2 | | Lingshu-32B | 70.2 | 22.7 | 65.4 | 41.1 | 77.8 | 66.1 | 74.7 | 84.7 | | HuatuoGPT-V-34B | 51.8 | 11.4 | 42.7 | 26.5 | 72.2 | 54.7 | 58.8 | 74.7 | | **Hulu-Med-14B** | **68.0** | **23.2** | **68.5** | **37.7** | **79.8** | **70.4** | **78.1** | **83.3** | | **Hulu-Med-32B** | **72.9** | **24.2** | **68.8** | **41.8** | **80.8** | **72.8** | **80.4** | **85.6** | ## 🚀 Model Zoo We provide three model variants with different parameter scales: | Model | Parameters | LLM Base | Training Cost | HuggingFace | ModelScope | |-------|-----------|----------|---------------|-------------|------------| | **Hulu-Med-7B** | 7B | Qwen2.5-7B | ~4,000 GPU hours | [🤗 Link](https://huggingface.co/ZJU-AI4H/Hulu-Med-7B) | [🔮 Link](https://modelscope.cn/models/Med-Team/Hulu-Med-7B) | | **Hulu-Med-14B** | 14B | Qwen3-14B | ~8,000 GPU hours | [🤗 Link](https://huggingface.co/ZJU-AI4H/Hulu-Med-14B) | [🔮 Link](https://modelscope.cn/models/Med-Team/Hulu-Med-14B) | | **Hulu-Med-32B** | 32B | Qwen2.5-32B | ~40,000 GPU hours | [🤗 Link](https://huggingface.co/ZJU-AI4H/Hulu-Med-32B) | [🔮 Link](https://modelscope.cn/models/Med-Team/Hulu-Med-32B) | ## 🛠️ Installation ```bash # Clone the repository git clone https://github.com/your-org/Hulu-Med.git cd Hulu-Med # Create conda environment conda create -n hulumed python=3.10 conda activate hulumed # PyTorch and torchvision for CUDA 11.8 pip install torch==2.4.0 torchvision==0.19.0 --extra-index-url https://download.pytorch.org/whl/cu118 # Flash-attn pinned to a compatible version pip install flash-attn==2.7.3 --no-build-isolation --upgrade # Transformers and accelerate pip install transformers==4.51.2 accelerate==1.7.0 # Video processing dependencies pip install decord ffmpeg-python imageio opencv-python # Install other dependencies pip install -r requirements.txt ``` ## 💻 Quick Start ### 2D Example ```python import torch from transformers import AutoModelForCausalLM, AutoProcessor from hulumed import disable_torch_init, model_init, mm_infer from hulumed import disable_torch_init, model_init, mm_infer from hulumed.model import load_pretrained_model from hulumed.mm_utils import load_images, process_images, load_video, process_video, tokenizer_multimodal_token, get_model_name_from_path, KeywordsStoppingCriteria from hulumed.model.processor import HulumedProcessor import os os.environ["CUDA_VISIBLE_DEVICES"] = "0" model_path = "xxxxxx" model_name = get_model_name_from_path(model_path) tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, None, model_name,device_map='cuda:0') processor = HulumedProcessor(image_processor, tokenizer) slices = load_images( "./demo/demo.jpg", ) conversation = [ { "role": "user", "content": [ {"type": "image"}, {"type": "text", "text": "Describe this image in detail."}, ] } ] modal='image' model=model.to("cuda:0") inputs = processor( images=[slices] if modal != "text" else None, text=conversation, merge_size=2 if modal == "video" else 1, return_tensors="pt" ) inputs = {k: v.cuda().to('cuda:0') if isinstance(v, torch.Tensor) else v for k, v in inputs.items()} if "pixel_values" in inputs: inputs["pixel_values"] = inputs["pixel_values"].to(torch.bfloat16) with torch.inference_mode(): output_ids = model.generate( **inputs, do_sample=True, modals=[modal], temperature=0.6, max_new_tokens=8192, use_cache=True, pad_token_id=tokenizer.eos_token_id, ) outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip() print(outputs) ``` ### 3D Example ``` slices = load_images( "./src/demo/amos_0013.nii", ##Support nii 3D input nii_num_slices=160 ) conversation = [ { "role": "user", "content": [ {"type": "video", "num_frames": len(slices)}, {"type": "text", "text": "This is a medical 3D scenario. Please generate a medical report for the given 3D medical images, including both findings and impressions."}, ] } ] modal='video' model=model.to("cuda:0") inputs = processor( images=[slices] if modal != "text" else None, text=conversation, merge_size=2 if modal == "video" else 1, return_tensors="pt" ) inputs = {k: v.cuda().to('cuda:0') if isinstance(v, torch.Tensor) else v for k, v in inputs.items()} if "pixel_values" in inputs: inputs["pixel_values"] = inputs["pixel_values"].to(torch.bfloat16) with torch.inference_mode(): output_ids = model.generate( **inputs, do_sample=True, modals=[modal], temperature=0.6, max_new_tokens=8192, use_cache=True, pad_token_id=tokenizer.eos_token_id, ) outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip() print(outputs) ``` ### Video Example ``` frames, timestamps = load_video("./src/demo/1min_demo.mp4", fps=1, max_frames=3000) conversation = [ { "role": "user", "content": [ {"type": "video", "num_frames": len(frames)}, {"type": "text", "text": "Please describe this video in detail."}, ] } ] modal='video' model=model.to("cuda:0") inputs = processor( images=[frames] if modal != "text" else None, text=conversation, merge_size=2 if modal == "video" else 1, return_tensors="pt" ) inputs = {k: v.cuda().to('cuda:0') if isinstance(v, torch.Tensor) else v for k, v in inputs.items()} if "pixel_values" in inputs: inputs["pixel_values"] = inputs["pixel_values"].to(torch.bfloat16) with torch.inference_mode(): output_ids = model.generate( **inputs, do_sample=True, modals=[modal], temperature=0.6, max_new_tokens=8192, use_cache=True, pad_token_id=tokenizer.eos_token_id, ) outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip() print(outputs) ``` ### Text Example ``` conversation = [ { "role": "user", "content": [ {"type": "text", "text": "Hello, I have a headache, what should I do?"}, ] } ] modal='text' model=model.to("cuda:0") inputs = processor( text=conversation, merge_size=2 if modal == "video" else 1, return_tensors="pt" ) inputs = {k: v.cuda().to('cuda:0') if isinstance(v, torch.Tensor) else v for k, v in inputs.items()} if "pixel_values" in inputs: inputs["pixel_values"] = inputs["pixel_values"].to(torch.bfloat16) with torch.inference_mode(): output_ids = model.generate( **inputs, do_sample=True, modals=[modal], temperature=0.6, max_new_tokens=8192, use_cache=True, pad_token_id=tokenizer.eos_token_id, ) outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip() print(outputs) ``` ## 📊 Training ### Data Preparation Our training data consists of 16.7M samples across four categories: - **Medical Multimodal Data** (9M samples): Covering 14 imaging modalities - **Medical Text Data** (4.9M samples): Clinical notes, literature, QA pairs - **General Multimodal Data** (1.3M samples): Enhancing generalization - **General Text Data** (1.5M samples): Improving reasoning capabilities Download and prepare the data: Comming soon ## 🏗️ Model Architecture Hulu-Med consists of four core components: 1. **Vision Encoder**: SigLIP-based encoder with 2D RoPE for unified 2D/3D/video processing 2. **Multimodal Projector**: Projects visual tokens into language model space 3. **LLM Decoder**: Qwen-based decoder for generating responses 4. **Medical-Aware Token Reduction**: Efficient processing with ~55% token reduction ## 📋 Supported Tasks - ✅ Visual Question Answering (2D/3D/Video) - ✅ Medical Report Generation - ✅ Disease Diagnosis - ✅ Anatomical Understanding - ✅ Surgical Phase Recognition - ✅ Clinical Dialogue - ✅ Medical Text Reasoning - ✅ Multilingual Medical QA - ✅ Rare Disease Diagnosis - More ## 📄 Citation If you find Hulu-Med useful in your research, please cite: ```bibtex @misc{jiang2025hulumedtransparentgeneralistmodel, title={Hulu-Med: A Transparent Generalist Model towards Holistic Medical Vision-Language Understanding}, author={Songtao Jiang and Yuan Wang and Sibo Song and Tianxiang Hu and Chenyi Zhou and Bin Pu and Yan Zhang and Zhibo Yang and Yang Feng and Joey Tianyi Zhou and Jin Hao and Zijian Chen and Ruijia Wu and Tao Tang and Junhui Lv and Hongxia Xu and Hongwei Wang and Jun Xiao and Bin Feng and Fudong Zhu and Kenli Li and Weidi Xie and Jimeng Sun and Jian Wu and Zuozhu Liu}, year={2025}, eprint={2510.08668}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2510.08668}, } ``` ## 📜 License This project is released under the [Apache 2.0 License](LICENSE). ---
Made with ❤️ by the ZJU AI4H Team