File size: 1,325 Bytes
7a0def2
 
 
 
 
 
 
 
c5afc9a
 
 
 
 
 
 
 
 
 
 
7a0def2
 
 
 
 
 
 
 
 
809a4fe
 
7a0def2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
---
license: apache-2.0
datasets:
- ZakyF/PRDECT-ID
language:
- id
metrics:
- accuracy
evaluation:
  - task:
      type: text-classification
      name: Sentiment Analysis
    metrics:
      - name: Accuracy
        type: accuracy
        value: 1.0
      - name: Cross-Validation Accuracy
        type: accuracy
        value: 0.99981
pipeline_tag: text-classification
library_name: sklearn
tags:
- sentiment-analysis
- nlp
- naive-bayes
- e-commerce
- indonesian
---
# Sentiment Analysis
Model SVM dan Naive Bayes untuk mengklasifikasikan ulasan ke dalam kategori Bagus, Normal, atau Buruk menggunakan PRDECT-ID Dataset.  
## Deskripsi
Model ini menganalisis ulasan pelanggan Tokopedia untuk menghasilkan insight seperti rekomendasi perbaikan pengiriman atau kualitas produk.  
## Penggunaan
```python
import pickle
from sklearn.preprocessing import LabelEncoder, StandardScaler

# Load model dan preprocessing
svm_model = pickle.load(open('svm_model.pkl', 'rb'))
scaler = pickle.load(open('scaler.pkl', 'rb'))
le_sentiment = pickle.load(open('le_sentiment.pkl', 'rb'))
le_emotion = pickle.load(open('le_emotion.pkl', 'rb'))

# Contoh prediksi
data = [[5, 'Positive', 'Happy']]  # Rating, Sentiment, Emotion
data_scaled = scaler.transform(data)
prediksi = svm_model.predict(data_scaled)
print(prediksi)  # Output: ['Bagus']