File size: 2,541 Bytes
f613ef7
 
1857ce2
 
 
 
 
 
 
 
 
 
f613ef7
1857ce2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
---

license: mit
language:
- en
pipeline_tag: image-to-text
tags:
- gregg-shorthand
- handwriting-recognition
- ocr
- historical-documents
- stenography
library_name: pytorch
---


# Gregg Shorthand Recognition Model

This model recognizes Gregg shorthand notation from images and converts it to readable text.

## Model Description

- **Model Type**: Image-to-Text recognition
- **Architecture**: CNN-LSTM with advanced pattern recognition
- **Training Data**: Gregg shorthand samples
- **Language**: English
- **License**: MIT

## Intended Use

This model is designed to:
- Recognize Gregg shorthand from scanned documents
- Convert historical stenographic notes to digital text
- Assist in digitizing shorthand archives
- Support stenography education and research

## How to Use

### Using the Hugging Face Transformers library

```python

from transformers import pipeline

from PIL import Image



# Load the pipeline

pipe = pipeline("image-to-text", model="a0a7/gregg-recognition")



# Load an image

image = Image.open("path/to/shorthand/image.png")



# Generate text

result = pipe(image)

print(result[0]['generated_text'])

```

### Using the original package

```python

from gregg_recognition import GreggRecognition



# Initialize the recognizer

recognizer = GreggRecognition(model_type="image_to_text")



# Recognize text from image

result = recognizer.recognize("path/to/image.png")

print(result)

```

### Command Line Interface

```bash

# Install the package

pip install gregg-recognition



# Use the CLI

gregg-recognize path/to/image.png --verbose

```

## Model Performance

The model uses advanced pattern recognition techniques optimized for Gregg shorthand notation.

## Training Details

- **Framework**: PyTorch
- **Optimizer**: Adam
- **Architecture**: Custom CNN-LSTM with pattern database
- **Input Resolution**: 256x256 pixels
- **Preprocessing**: Grayscale conversion, normalization

## Limitations

- Optimized specifically for Gregg shorthand notation
- Performance may vary with image quality
- Best results with clear, high-contrast images

## Citation

If you use this model in your research, please cite:

```bibtex

@misc{gregg-recognition,

  title={Gregg Shorthand Recognition Model},

  author={Your Name},

  year={2025},

  url={https://huggingface.co/a0a7/gregg-recognition}

}

```

## Contact

For questions or issues, please open an issue on the [GitHub repository](https://github.com/a0a7/GreggRecognition).