--- tags: - generated_from_trainer model-index: - name: GraphCodebert-gpt2 results: [] --- # GraphCodebert-gpt2 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6964 - Rouge2 Precision: 0.1809 - Rouge2 Recall: 0.1775 - Rouge2 Fmeasure: 0.1747 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:| | No log | 0.29 | 500 | 5.0350 | 0.0889 | 0.0797 | 0.0819 | | 6.0048 | 0.58 | 1000 | 4.4849 | 0.1159 | 0.116 | 0.1138 | | 6.0048 | 0.87 | 1500 | 4.1607 | 0.151 | 0.1474 | 0.1452 | | 4.2848 | 1.15 | 2000 | 4.0174 | 0.1558 | 0.1465 | 0.1471 | | 4.2848 | 1.44 | 2500 | 3.8264 | 0.1786 | 0.1683 | 0.1685 | | 3.8448 | 1.73 | 3000 | 3.6964 | 0.1809 | 0.1775 | 0.1747 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2