File size: 6,760 Bytes
6065fb4
 
15fe85c
 
06a4394
15fe85c
 
 
 
 
06a4394
b373ef0
 
b9a59e3
 
6c8fa73
b373ef0
67db0d4
 
b373ef0
 
64dbf64
b373ef0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86a9a99
b373ef0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9e516a
33a6944
b373ef0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9a59e3
 
 
 
b373ef0
 
b9a59e3
 
 
b373ef0
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
---
license: apache-2.0
library_name: peft
pipeline_tag: text-generation
inference: false
tags:
- finetuned
- prompt generator
- stable-diffusion
- mistralai/Mistral-7B-v0.1
- 'inference: false'
---

<br>

<h1 style="font-size: 2em;">Prompt Diffusion ๐Ÿš€</h1>

|<img src="coffee.png" width="550"/>|<img src="skii.png" width="550"/>|<img src="dance_rain.png" width="550"/>|<img src="man_beach.png" width="550"/>|
|---------------------------------------|----------------------------------|-----------------------------------------|--------------------------------------|


This model was build via parameter-efficient QLoRA finetuning of [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on a custom dataset.
The goal of this project is to build a model which takes simple and short natural language inputs and generate a highly detailed and descriptive prompt for [Stable Diffusion](https://stability.ai/stable-diffusion) and other similar image generation models.
Hence making it easier for everyone to get high quality images easily.

## Note

>This is the first iteration of this project and it was to check the capabilities of Mistral-7B model.
>As of now the model is fine-tuned mostly on the prompts which includes humans, with description of the subject and the scene.
>This is a work in progress and this is just a prototype. Hence, one can expect issues with response from the model.

## Input Template

```
###Human:
generate a stable diffusion prompt for {input}

###Assistant:
```

## Output Template

```
###Human:
generate a stable diffusion prompt for a model in a cafe sipping coffee

###Assistant:
A model in a cafe sipping coffee, with a warm glow illuminating her face. She wears a stylish dress and has a book in her hand. The background is a cozy cafe with dim lights.
```

## Example prompts and responses

Example 1: 

**User**:

>a model in a cafe sipping coffee

**Prompt Diffusion**

>A model in a cafe sipping coffee, with a warm glow illuminating her face.
She wears a stylish dress and has a book in her hand. The background is a cozy cafe with dim lights.

<br>

Example 2: 

**User**:

>a man skiing

**Prompt Diffusion**

>A man in a ski suit, with a helmet and goggles, is skiing down a snowy mountain, with the wind blowing in his face and the sun shining brightly. 
The man is enjoying the thrill of skiing, as he glides down the slopes, leaving behind a trail of fresh powder.

<br>

Example 3: 

**User**:

>a beautiful woman dancing in rain

**Prompt Diffusion**

>A beautiful woman, dressed in a flowing white gown, dances gracefully in the rain. 
The raindrops fall gently around her, creating a magical and ethereal atmosphere. 
She moves with grace and elegance, her long hair flowing in the wind. 
The rain creates a shimmering effect on her gown, making her look like a goddess.

<br>

Example 4: 

**User**:

>a man on a beach

**Prompt Diffusion**

>A man sits on a beach, the waves crashing against the shore.
The sun is setting, casting a warm glow over the sand and water.
The man is lost in thought, his mind wandering as he takes in the beauty of the scene.

<br>

## Demo

>This code can be run even on the free version of Google Colab. Change the runtime to **GPU - T4** and run the notebook below:

## <a href="https://colab.research.google.com/drive/1NfNA6sYWUG0Nqy42lhyJfUIqDxsrV64d?usp=sharing" target="_blank" style="color: orange; font-weight: bold;">Try on Colab</a> ๐Ÿš€


## Basic usage

```python
!pip install git+https://github.com/huggingface/transformers
!pip install git+https://github.com/huggingface/peft.git
!pip install torch
!pip install -q bitsandbytes accelerate
```

```python
#Importing libraries

from peft import PeftConfig, PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
import torch
import re
```

```python
#Loading adapter model and merging it with base model for inferencing

torch.set_default_device('cuda')

peft_model_id = "abhishek7/Prompt_diffusion-v0.1"

config = PeftConfig.from_pretrained(peft_model_id)

bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16,
)

model = AutoModelForCausalLM.from_pretrained(
    config.base_model_name_or_path,
    low_cpu_mem_usage=True,
    load_in_4bit=True,
    quantization_config=bnb_config,
    torch_dtype=torch.float16,
    device_map="auto"
)

model = PeftModel.from_pretrained(model, peft_model_id)

model = model.merge_and_unload()

tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path, trust_remote_code=True)
tokenizer.padding_side = "right"
```

```python
# Function to truncate text based on punctuation count

def truncate_text(text, max_punctuation):
    punctuation_count = 0
    truncated_text = ""
    for char in text:
        truncated_text += char
        if char in [',', '.']:
            punctuation_count += 1
            if punctuation_count >= max_punctuation:
                break
    # Replace the last comma with a full stop if the last punctuation is a comma
    if truncated_text.rstrip()[-1] == ',':
        truncated_text = truncated_text.rstrip()[:-1] + '.'

    return truncated_text


# Function to generate prompt

def generate_prompt(input, max_length, temperature):
    input_context = f'''
###Human:
generate a stable diffusion prompt for {input}

###Assistant:
'''

    inputs = tokenizer.encode(input_context, return_tensors="pt")
    outputs = model.generate(inputs, max_length=max_length, temperature=temperature, num_return_sequences=1)

    output_text = tokenizer.decode(outputs[0], skip_special_tokens = True)

    # Extract the Assistant's response using regex
    match = re.search(r'###Assistant:(.*?)(###Human:|$)', output_text, re.DOTALL)
    if match:
        assistant_response = match.group(1)
    else:
        raise ValueError("No Assistant response found")



    # Truncate the Assistant's response based on the criteria
    truncated_response = truncate_text(assistant_response, max_punctuation=10)

    return truncated_response
```

```python
# Usage:

input_text = "a beautiful woman dancing in rain"

prompt = generate_prompt(input_text, 150, 0.3)

print("\nPrompt: " + prompt)
```

## Contributing

Contributions are welcome! If you find any bugs, create an issue or submit a pull request with your proposed changes.

## Acknowledgements

This model was finetuned by [Abhishek Kalra](https://github.com/abhishek7kalra) on Sep 29, 2023 and is for research applications only.

[![Gmail](https://img.shields.io/badge/Gmail-D14836?style=for-the-badge&logo=gmail&logoColor=white)](mailto:abhishek7.kalra@gmail.com)

## mistralai/Mistral-7B-v0.1 citation

```
coming
```

## Framework versions

- PEFT 0.6.0.dev0