File size: 8,060 Bytes
1ed37ae
b8eddb1
 
 
 
 
 
1ed37ae
 
b8eddb1
1ed37ae
 
 
 
 
 
 
 
 
 
 
5f49a75
1ed37ae
b8eddb1
 
 
 
 
 
 
1ed37ae
 
 
 
 
b8eddb1
1ed37ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8eddb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ed37ae
 
 
 
 
 
 
5f49a75
1ed37ae
 
 
 
 
 
 
b8eddb1
1ed37ae
 
 
 
b8eddb1
1ed37ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f49a75
1ed37ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8eddb1
 
 
5f49a75
b8eddb1
 
 
5f49a75
 
 
b8eddb1
 
 
5f49a75
b8eddb1
 
 
5f49a75
 
 
 
 
 
b8eddb1
5f49a75
 
 
 
 
 
 
 
 
b8eddb1
 
1ed37ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8eddb1
 
 
 
 
1ed37ae
 
 
 
 
b8eddb1
1ed37ae
 
 
b8eddb1
 
 
 
 
 
 
 
1ed37ae
 
 
b8eddb1
1ed37ae
 
 
b8eddb1
 
5f49a75
 
 
b8eddb1
1ed37ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8eddb1
1ed37ae
 
 
b8eddb1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
---
language: en
tags:
- text-classification
tasks:
- text-classification
dataset_name: New
---

# Model Card for acuvity/model_integration_test

<!-- Provide a quick summary of what the model is/does. -->



## Model Details

### Model Description

<!-- Provide a longer summary of what this model is. -->

Auto Fine-tuned acuvity/model_integration_test for text-classification task. The run id is v0.0.4

- **Developed by:** Auto-Finetune Bot
- **Funded by [optional]:** Auto-Finetune Bot
- **Shared by [optional]:** Auto-Finetune Bot
- **Model type:** text-classification
- **Language(s) (NLP):** en
- **License:** Closed Source
- **Finetuned from model [optional]:** acuvity/model_integration_test

### Model Sources [optional]

<!-- Provide the basic links for the model. -->

- **Repository:** [acuvity/model_integration_test](https://huggingface.co/acuvity/acuvity/model_integration_test)
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]

## Uses

<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->

### Direct Use

<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->

[More Information Needed]

### Downstream Use [optional]

<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->

[More Information Needed]

### Out-of-Scope Use

<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->

[More Information Needed]

## Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

[More Information Needed]

### Recommendations

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

## How to Get Started with the Model

Use the code below to get started with the model.


```python
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification

tokenizer = AutoTokenizer.from_pretrained("acuvity/model_integration_test")
model = AutoModelForSequenceClassification.from_pretrained("acuvity/model_integration_test")

inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
with torch.no_grad():
    logits = model(**inputs).logits

predicted_class_id = logits.argmax().item()
model.config.id2label[predicted_class_id]
```
```python
from transformers import pipeline
classifier = pipeline("text-classification", model="acuvity/model_integration_test")
classifier("Hello, my dog is cute")
```
    

## Training Details

### Training Data

<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->

(New | v0.0.4) [https://huggingface.co/datasets/acuvity/New]

### Training Procedure

<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->

#### Preprocessing [optional]

No modifications done on the dataset.


#### Training Hyperparameters

- **Training regime:** {'fp16_bool': False, 'num_train_epochs': 5, 'learning_rate': 1e-05, 'batch_size': 256, 'weight_decay': 0.01} <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->

#### Speeds, Sizes, Times [optional]

<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->

[More Information Needed]

## Evaluation

<!-- This section describes the evaluation protocols and provides the results. -->

### Testing Data, Factors & Metrics

#### Testing Data

<!-- This should link to a Dataset Card if possible. -->

(New | v0.0.4) [https://huggingface.co/datasets/acuvity/New]

#### Factors

<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->

[More Information Needed]

#### Metrics

<!-- These are the evaluation metrics being used, ideally with a description of why. -->

[More Information Needed]

### Results


# Auto Finetune Report for Prompt Injection
## Model URL: acuvity/model_integration_test
## Model Commit: v0.0.4

## Quick Summary

Accuracy: 0.0008237232289950436
Regression: 0.0006873789967815756
Improvement: 0.0009149276196107874

## Results Summary

### Prompt Injection | v0.0.4 Results

|          |   accuracy |        f1 |   precision |   recall |
|:---------|-----------:|----------:|------------:|---------:|
| New      |  0.999176  | 0.998993  |   1         | 0.997988 |
| Baseline |  0.999126  | 0.998993  |   1         | 0.997988 |
| Feedback |  1         | 0         |   0         | 0        |
| QA       |  0.982216  | 0         |   0         | 0        |
| PINT     |  0.0701696 | 0.0790514 |   0.0421793 | 0.628272 |
| Sanity   |  0.630435  | 0.773333  |   0.630435  | 1        |
----------------------------------------------------
### Prompt Injection | v0.0.3 Results
|          |   accuracy |        f1 |   precision |   recall |
|:---------|-----------:|----------:|------------:|---------:|
| New      |  0.998353  | 0.997988  |   1         | 0.995984 |
| Baseline |  0.998252  | 0.997988  |   1         | 0.995984 |
| Feedback |  1         | 0         |   0         | 0        |
| QA       |  0.98164   | 0         |   0         | 0        |
| PINT     |  0.0705022 | 0.0808944 |   0.0432337 | 0.627551 |
| Sanity   |  0.630435  | 0.773333  |   0.630435  | 1        |

    

#### Summary



## Model Examination [optional]

<!-- Relevant interpretability work for the model goes here -->

[More Information Needed]

## Environmental Impact

<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->

Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).

- **Hardware Type:** Quadro P4000
- **Hours used:** 4 Hours
- **Cloud Provider:** Paperspace | Digital Ocean
- **Compute Region:** NY2
- **Carbon Emitted:** 0, we are carbon neutral

## Technical Specifications [optional]

### Model Architecture and Objective

acuvity/model_integration_test

### Compute Infrastructure

|                  | 0                                            |
|:-----------------|:---------------------------------------------|
| platform         | Linux                                        |
| platform-release | 5.15.0-130-generic                           |
| platform-version | #140-Ubuntu SMP Wed Dec 18 17:59:53 UTC 2024 |
| architecture     | x86_64                                       |
| processor        | x86_64                                       |
| ram              | 29 GB                                        |

#### Hardware

Quadro P4000

#### Software

|                      | 0           |
|:---------------------|:------------|
| python_version       | 3.10.16     |
| pytorch_version      | 2.5.1+cu124 |
| transformers_version | 4.47.1      |
| datasets_version     | 3.2.0       |

## Citation [optional]

<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

[More Information Needed]

**APA:**

[More Information Needed]

## Glossary [optional]

<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->

[More Information Needed]

## More Information [optional]

[More Information Needed]

## Model Card Authors [optional]

acuvity

## Model Card Contact

[acuvity@acuvity.ai](mailto:acuvity@acuvity.ai)