File size: 8,060 Bytes
1ed37ae b8eddb1 1ed37ae b8eddb1 1ed37ae 5f49a75 1ed37ae b8eddb1 1ed37ae b8eddb1 1ed37ae b8eddb1 1ed37ae 5f49a75 1ed37ae b8eddb1 1ed37ae b8eddb1 1ed37ae 5f49a75 1ed37ae b8eddb1 5f49a75 b8eddb1 5f49a75 b8eddb1 5f49a75 b8eddb1 5f49a75 b8eddb1 5f49a75 b8eddb1 1ed37ae b8eddb1 1ed37ae b8eddb1 1ed37ae b8eddb1 1ed37ae b8eddb1 1ed37ae b8eddb1 5f49a75 b8eddb1 1ed37ae b8eddb1 1ed37ae b8eddb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
---
language: en
tags:
- text-classification
tasks:
- text-classification
dataset_name: New
---
# Model Card for acuvity/model_integration_test
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
Auto Fine-tuned acuvity/model_integration_test for text-classification task. The run id is v0.0.4
- **Developed by:** Auto-Finetune Bot
- **Funded by [optional]:** Auto-Finetune Bot
- **Shared by [optional]:** Auto-Finetune Bot
- **Model type:** text-classification
- **Language(s) (NLP):** en
- **License:** Closed Source
- **Finetuned from model [optional]:** acuvity/model_integration_test
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [acuvity/model_integration_test](https://huggingface.co/acuvity/acuvity/model_integration_test)
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
```python
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("acuvity/model_integration_test")
model = AutoModelForSequenceClassification.from_pretrained("acuvity/model_integration_test")
inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
with torch.no_grad():
logits = model(**inputs).logits
predicted_class_id = logits.argmax().item()
model.config.id2label[predicted_class_id]
```
```python
from transformers import pipeline
classifier = pipeline("text-classification", model="acuvity/model_integration_test")
classifier("Hello, my dog is cute")
```
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
(New | v0.0.4) [https://huggingface.co/datasets/acuvity/New]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
No modifications done on the dataset.
#### Training Hyperparameters
- **Training regime:** {'fp16_bool': False, 'num_train_epochs': 5, 'learning_rate': 1e-05, 'batch_size': 256, 'weight_decay': 0.01} <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
(New | v0.0.4) [https://huggingface.co/datasets/acuvity/New]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
# Auto Finetune Report for Prompt Injection
## Model URL: acuvity/model_integration_test
## Model Commit: v0.0.4
## Quick Summary
Accuracy: 0.0008237232289950436
Regression: 0.0006873789967815756
Improvement: 0.0009149276196107874
## Results Summary
### Prompt Injection | v0.0.4 Results
| | accuracy | f1 | precision | recall |
|:---------|-----------:|----------:|------------:|---------:|
| New | 0.999176 | 0.998993 | 1 | 0.997988 |
| Baseline | 0.999126 | 0.998993 | 1 | 0.997988 |
| Feedback | 1 | 0 | 0 | 0 |
| QA | 0.982216 | 0 | 0 | 0 |
| PINT | 0.0701696 | 0.0790514 | 0.0421793 | 0.628272 |
| Sanity | 0.630435 | 0.773333 | 0.630435 | 1 |
----------------------------------------------------
### Prompt Injection | v0.0.3 Results
| | accuracy | f1 | precision | recall |
|:---------|-----------:|----------:|------------:|---------:|
| New | 0.998353 | 0.997988 | 1 | 0.995984 |
| Baseline | 0.998252 | 0.997988 | 1 | 0.995984 |
| Feedback | 1 | 0 | 0 | 0 |
| QA | 0.98164 | 0 | 0 | 0 |
| PINT | 0.0705022 | 0.0808944 | 0.0432337 | 0.627551 |
| Sanity | 0.630435 | 0.773333 | 0.630435 | 1 |
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** Quadro P4000
- **Hours used:** 4 Hours
- **Cloud Provider:** Paperspace | Digital Ocean
- **Compute Region:** NY2
- **Carbon Emitted:** 0, we are carbon neutral
## Technical Specifications [optional]
### Model Architecture and Objective
acuvity/model_integration_test
### Compute Infrastructure
| | 0 |
|:-----------------|:---------------------------------------------|
| platform | Linux |
| platform-release | 5.15.0-130-generic |
| platform-version | #140-Ubuntu SMP Wed Dec 18 17:59:53 UTC 2024 |
| architecture | x86_64 |
| processor | x86_64 |
| ram | 29 GB |
#### Hardware
Quadro P4000
#### Software
| | 0 |
|:---------------------|:------------|
| python_version | 3.10.16 |
| pytorch_version | 2.5.1+cu124 |
| transformers_version | 4.47.1 |
| datasets_version | 3.2.0 |
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
acuvity
## Model Card Contact
[acuvity@acuvity.ai](mailto:acuvity@acuvity.ai) |