from sklearn.cluster import KMeans from collections import Counter import numpy as np import cv2 def get_image(pil_image): nimg = np.array(pil_image) image = cv2.cvtColor(nimg, cv2.COLOR_RGB2BGR) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) return image def get_labels(rimg): clf = KMeans(n_clusters=5) labels = clf.fit_predict(rimg) return labels, clf def get_closest_color(colors): white = (255, 255, 255) closest_color = min(colors, key=lambda c: np.linalg.norm(np.array(c) - white)) return closest_color def RGB2HEX(color): return "#{:02x}{:02x}{:02x}".format(int(color[0]), int(color[1]), int(color[2])) def extract_colors_and_closest_to_white(image_path): img = cv2.imread(image_path) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) reshaped_img = img.reshape(img.shape[0] * img.shape[1], img.shape[2]) labels, clf = get_labels(reshaped_img) counts = Counter(labels) center_colors = clf.cluster_centers_ ordered_colors = [center_colors[i] for i in counts.keys()] hex_colors = [RGB2HEX(ordered_colors[i]) for i in counts.keys()] closest_color_to_white = get_closest_color(center_colors) hex_closest_color_to_white = RGB2HEX(closest_color_to_white) return hex_colors, hex_closest_color_to_white