Upload README.md with huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model: nicholasKluge/Aira-2-1B1
|
| 3 |
+
co2_eq_emissions:
|
| 4 |
+
emissions: 1.78
|
| 5 |
+
geographical_location: United States of America
|
| 6 |
+
hardware_used: NVIDIA A100-SXM4-40GB
|
| 7 |
+
source: CodeCarbon
|
| 8 |
+
training_type: fine-tuning
|
| 9 |
+
datasets:
|
| 10 |
+
- nicholasKluge/instruct-aira-dataset
|
| 11 |
+
inference: false
|
| 12 |
+
language:
|
| 13 |
+
- en
|
| 14 |
+
library_name: transformers
|
| 15 |
+
license: apache-2.0
|
| 16 |
+
metrics:
|
| 17 |
+
- accuracy
|
| 18 |
+
model_creator: nicholasKluge
|
| 19 |
+
model_name: Aira-2-1B1
|
| 20 |
+
pipeline_tag: text-generation
|
| 21 |
+
quantized_by: afrideva
|
| 22 |
+
tags:
|
| 23 |
+
- alignment
|
| 24 |
+
- instruction tuned
|
| 25 |
+
- text generation
|
| 26 |
+
- conversation
|
| 27 |
+
- assistant
|
| 28 |
+
- gguf
|
| 29 |
+
- ggml
|
| 30 |
+
- quantized
|
| 31 |
+
- q2_k
|
| 32 |
+
- q3_k_m
|
| 33 |
+
- q4_k_m
|
| 34 |
+
- q5_k_m
|
| 35 |
+
- q6_k
|
| 36 |
+
- q8_0
|
| 37 |
+
widget:
|
| 38 |
+
- example_title: Greetings
|
| 39 |
+
text: <|startofinstruction|>How should I call you?<|endofinstruction|>
|
| 40 |
+
- example_title: Machine Learning
|
| 41 |
+
text: <|startofinstruction|>Can you explain what is Machine Learning?<|endofinstruction|>
|
| 42 |
+
- example_title: Ethics
|
| 43 |
+
text: <|startofinstruction|>Do you know anything about virtue ethics?<|endofinstruction|>
|
| 44 |
+
- example_title: Advise
|
| 45 |
+
text: <|startofinstruction|>How can I make my girlfriend happy?<|endofinstruction|>
|
| 46 |
+
---
|
| 47 |
+
# nicholasKluge/Aira-2-1B1-GGUF
|
| 48 |
+
|
| 49 |
+
Quantized GGUF model files for [Aira-2-1B1](https://huggingface.co/nicholasKluge/Aira-2-1B1) from [nicholasKluge](https://huggingface.co/nicholasKluge)
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
| Name | Quant method | Size |
|
| 53 |
+
| ---- | ---- | ---- |
|
| 54 |
+
| [aira-2-1b1.fp16.gguf](https://huggingface.co/afrideva/Aira-2-1B1-GGUF/resolve/main/aira-2-1b1.fp16.gguf) | fp16 | 2.20 GB |
|
| 55 |
+
| [aira-2-1b1.q2_k.gguf](https://huggingface.co/afrideva/Aira-2-1B1-GGUF/resolve/main/aira-2-1b1.q2_k.gguf) | q2_k | 482.15 MB |
|
| 56 |
+
| [aira-2-1b1.q3_k_m.gguf](https://huggingface.co/afrideva/Aira-2-1B1-GGUF/resolve/main/aira-2-1b1.q3_k_m.gguf) | q3_k_m | 549.86 MB |
|
| 57 |
+
| [aira-2-1b1.q4_k_m.gguf](https://huggingface.co/afrideva/Aira-2-1B1-GGUF/resolve/main/aira-2-1b1.q4_k_m.gguf) | q4_k_m | 667.83 MB |
|
| 58 |
+
| [aira-2-1b1.q5_k_m.gguf](https://huggingface.co/afrideva/Aira-2-1B1-GGUF/resolve/main/aira-2-1b1.q5_k_m.gguf) | q5_k_m | 782.06 MB |
|
| 59 |
+
| [aira-2-1b1.q6_k.gguf](https://huggingface.co/afrideva/Aira-2-1B1-GGUF/resolve/main/aira-2-1b1.q6_k.gguf) | q6_k | 903.43 MB |
|
| 60 |
+
| [aira-2-1b1.q8_0.gguf](https://huggingface.co/afrideva/Aira-2-1B1-GGUF/resolve/main/aira-2-1b1.q8_0.gguf) | q8_0 | 1.17 GB |
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
## Original Model Card:
|
| 65 |
+
# Aira-2-1B1
|
| 66 |
+
|
| 67 |
+
`Aira-2` is the second version of the Aira instruction-tuned series. `Aira-2-1B1` is an instruction-tuned GPT-style model based on [TinyLlama-1.1B](https://huggingface.co/PY007/TinyLlama-1.1B-intermediate-step-480k-1T). The model was trained with a dataset composed of prompts and completions generated synthetically by prompting already-tuned models (ChatGPT, Llama, Open-Assistant, etc).
|
| 68 |
+
|
| 69 |
+
Check our gradio-demo in [Spaces](https://huggingface.co/spaces/nicholasKluge/Aira-Demo).
|
| 70 |
+
|
| 71 |
+
## Details
|
| 72 |
+
|
| 73 |
+
- **Size:** 1,261,545,472 parameters
|
| 74 |
+
- **Dataset:** [Instruct-Aira Dataset](https://huggingface.co/datasets/nicholasKluge/instruct-aira-dataset)
|
| 75 |
+
- **Language:** English
|
| 76 |
+
- **Number of Epochs:** 3
|
| 77 |
+
- **Batch size:** 4
|
| 78 |
+
- **Optimizer:** `torch.optim.AdamW` (warmup_steps = 1e2, learning_rate = 5e-4, epsilon = 1e-8)
|
| 79 |
+
- **GPU:** 1 NVIDIA A100-SXM4-40GB
|
| 80 |
+
- **Emissions:** 1.78 KgCO2 (Singapore)
|
| 81 |
+
- **Total Energy Consumption:** 3.64 kWh
|
| 82 |
+
|
| 83 |
+
This repository has the [source code](https://github.com/Nkluge-correa/Aira) used to train this model.
|
| 84 |
+
|
| 85 |
+
## Usage
|
| 86 |
+
|
| 87 |
+
Three special tokens are used to mark the user side of the interaction and the model's response:
|
| 88 |
+
|
| 89 |
+
`<|startofinstruction|>`What is a language model?`<|endofinstruction|>`A language model is a probability distribution over a vocabulary.`<|endofcompletion|>`
|
| 90 |
+
|
| 91 |
+
```python
|
| 92 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 93 |
+
import torch
|
| 94 |
+
|
| 95 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 96 |
+
|
| 97 |
+
tokenizer = AutoTokenizer.from_pretrained('nicholasKluge/Aira-2-1B1')
|
| 98 |
+
aira = AutoModelForCausalLM.from_pretrained('nicholasKluge/Aira-2-1B1')
|
| 99 |
+
|
| 100 |
+
aira.eval()
|
| 101 |
+
aira.to(device)
|
| 102 |
+
|
| 103 |
+
question = input("Enter your question: ")
|
| 104 |
+
|
| 105 |
+
inputs = tokenizer(tokenizer.bos_token + question + tokenizer.sep_token, return_tensors="pt").to(device)
|
| 106 |
+
|
| 107 |
+
responses = aira.generate(**inputs,
|
| 108 |
+
bos_token_id=tokenizer.bos_token_id,
|
| 109 |
+
pad_token_id=tokenizer.pad_token_id,
|
| 110 |
+
eos_token_id=tokenizer.eos_token_id,
|
| 111 |
+
do_sample=True,
|
| 112 |
+
top_k=50,
|
| 113 |
+
max_length=500,
|
| 114 |
+
top_p=0.95,
|
| 115 |
+
temperature=0.7,
|
| 116 |
+
num_return_sequences=2)
|
| 117 |
+
|
| 118 |
+
print(f"Question: 👤 {question}\n")
|
| 119 |
+
|
| 120 |
+
for i, response in enumerate(responses):
|
| 121 |
+
print(f'Response {i+1}: 🤖 {tokenizer.decode(response, skip_special_tokens=True).replace(question, "")}')
|
| 122 |
+
```
|
| 123 |
+
|
| 124 |
+
The model will output something like:
|
| 125 |
+
|
| 126 |
+
```markdown
|
| 127 |
+
>>>Question: 👤 What is the capital of Brazil?
|
| 128 |
+
|
| 129 |
+
>>>Response 1: 🤖 The capital of Brazil is Brasília.
|
| 130 |
+
>>>Response 2: 🤖 The capital of Brazil is Brasília.
|
| 131 |
+
```
|
| 132 |
+
|
| 133 |
+
## Limitations
|
| 134 |
+
|
| 135 |
+
🤥 Generative models can perpetuate the generation of pseudo-informative content, that is, false information that may appear truthful.
|
| 136 |
+
|
| 137 |
+
🤬 In certain types of tasks, generative models can produce harmful and discriminatory content inspired by historical stereotypes.
|
| 138 |
+
|
| 139 |
+
## Evaluation
|
| 140 |
+
|
| 141 |
+
| Model (TinyLlama) | Average | [ARC](https://arxiv.org/abs/1803.05457) | [TruthfulQA](https://arxiv.org/abs/2109.07958) | [ToxiGen](https://arxiv.org/abs/2203.09509) |
|
| 142 |
+
|---------------------------------------------------------------|-----------|-----------------------------------------|------------------------------------------------|---------------------------------------------|
|
| 143 |
+
| [Aira-2-1B1](https://huggingface.co/nicholasKluge/Aira-2-1B1) | **42.55** | 25.26 | **50.81** | **51.59** |
|
| 144 |
+
| TinyLlama-1.1B-intermediate-step-480k-1T | 37.52 | **30.89** | 39.55 | 42.13 |
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
* Evaluations were performed using the [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) (by [EleutherAI](https://www.eleuther.ai/)).
|
| 148 |
+
|
| 149 |
+
## Cite as 🤗
|
| 150 |
+
|
| 151 |
+
```latex
|
| 152 |
+
|
| 153 |
+
@misc{nicholas22aira,
|
| 154 |
+
doi = {10.5281/zenodo.6989727},
|
| 155 |
+
url = {https://huggingface.co/nicholasKluge/Aira-2-1B1},
|
| 156 |
+
author = {Nicholas Kluge Corrêa},
|
| 157 |
+
title = {Aira},
|
| 158 |
+
year = {2023},
|
| 159 |
+
publisher = {HuggingFace},
|
| 160 |
+
journal = {HuggingFace repository},
|
| 161 |
+
}
|
| 162 |
+
|
| 163 |
+
```
|
| 164 |
+
|
| 165 |
+
## License
|
| 166 |
+
|
| 167 |
+
The `Aira-2-1B1` is licensed under the Apache License, Version 2.0. See the [LICENSE](LICENSE) file for more details.
|
| 168 |
+
|
| 169 |
+
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
|
| 170 |
+
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_nicholasKluge__Aira-2-1B1)
|
| 171 |
+
|
| 172 |
+
| Metric | Value |
|
| 173 |
+
|-----------------------|---------------------------|
|
| 174 |
+
| Avg. | 25.19 |
|
| 175 |
+
| ARC (25-shot) | 23.21 |
|
| 176 |
+
| HellaSwag (10-shot) | 26.97 |
|
| 177 |
+
| MMLU (5-shot) | 24.86 |
|
| 178 |
+
| TruthfulQA (0-shot) | 50.63 |
|
| 179 |
+
| Winogrande (5-shot) | 50.28 |
|
| 180 |
+
| GSM8K (5-shot) | 0.0 |
|
| 181 |
+
| DROP (3-shot) | 0.39 |
|