File size: 11,458 Bytes
7b2dd37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "89791f21c171372a",
   "metadata": {},
   "source": [
    "# Agent\n",
    "\n",
    "Dans ce *notebook*, **nous allons construire un agent simple en utilisant LangGraph**.\n",
    "\n",
    "Ce notebook fait parti du cours <a href=\"https://huggingface.co/learn/agents-course/fr\">sur les agents d'Hugging Face</a>, un cours gratuit qui vous guidera, du **niveau débutant à expert**, pour comprendre, utiliser et construire des agents.\n",
    "![Agents course share](https://huggingface.co/datasets/agents-course/course-images/resolve/main/en/communication/share.png)\n",
    "\n",
    "Comme nous l'avons vu dans l'Unité 1, un agent a besoin de 3 étapes telles qu'introduites dans l'architecture ReAct :\n",
    "[ReAct](https://react-lm.github.io/), une architecture générale d'agent.\n",
    "\n",
    "* `act` - laisser le modèle appeler des outils spécifiques\n",
    "* `observe` - transmettre la sortie de l'outil au modèle\n",
    "* `reason` - permet au modèle de raisonner sur la sortie de l'outil pour décider de ce qu'il doit faire ensuite (par exemple, appeler un autre outil ou simplement répondre directement).\n",
    "\n",
    "![Agent](https://huggingface.co/datasets/agents-course/course-images/resolve/main/en/unit2/LangGraph/Agent.png)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "bef6c5514bd263ce",
   "metadata": {},
   "outputs": [],
   "source": [
    "%pip install -q -U langchain_openai langchain_core langgraph"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "61d0ed53b26fa5c6",
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "\n",
    "# Veuillez configurer votre propre clé\n",
    "os.environ[\"OPENAI_API_KEY\"] = \"sk-xxxxxx\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a4a8bf0d5ac25a37",
   "metadata": {},
   "outputs": [],
   "source": [
    "import base64\n",
    "from langchain_core.messages import HumanMessage\n",
    "from langchain_openai import ChatOpenAI\n",
    "\n",
    "vision_llm = ChatOpenAI(model=\"gpt-4o\")\n",
    "\n",
    "\n",
    "def extract_text(img_path: str) -> str:\n",
    "    \"\"\"\n",
    "    Extract text from an image file using a multimodal model.\n",
    "\n",
    "    Args:\n",
    "        img_path: A local image file path (strings).\n",
    "\n",
    "    Returns:\n",
    "        A single string containing the concatenated text extracted from each image.\n",
    "    \"\"\"\n",
    "    all_text = \"\"\n",
    "    try:\n",
    "\n",
    "        # Lire l'image et l'encoder en base64\n",
    "        with open(img_path, \"rb\") as image_file:\n",
    "            image_bytes = image_file.read()\n",
    "\n",
    "        image_base64 = base64.b64encode(image_bytes).decode(\"utf-8\")\n",
    "\n",
    "        # Préparer le prompt en incluant les données de l'image base64\n",
    "        message = [\n",
    "            HumanMessage(\n",
    "                content=[\n",
    "                    {\n",
    "                        \"type\": \"text\",\n",
    "                        \"text\": (\n",
    "                            \"Extract all the text from this image. \"\n",
    "                            \"Return only the extracted text, no explanations.\"\n",
    "                        ),\n",
    "                    },\n",
    "                    {\n",
    "                        \"type\": \"image_url\",\n",
    "                        \"image_url\": {\n",
    "                            \"url\": f\"data:image/png;base64,{image_base64}\"\n",
    "                        },\n",
    "                    },\n",
    "                ]\n",
    "            )\n",
    "        ]\n",
    "\n",
    "        # Appeler le VLM\n",
    "        response = vision_llm.invoke(message)\n",
    "\n",
    "        # Ajouter le texte extrait\n",
    "        all_text += response.content + \"\\n\\n\"\n",
    "\n",
    "        return all_text.strip()\n",
    "    except Exception as e:\n",
    "        # Vous pouvez choisir de renvoyer une chaîne vide ou un message d'erreur.\n",
    "        error_msg = f\"Error extracting text: {str(e)}\"\n",
    "        print(error_msg)\n",
    "        return \"\"\n",
    "\n",
    "\n",
    "llm = ChatOpenAI(model=\"gpt-4o\")\n",
    "\n",
    "\n",
    "def divide(a: int, b: int) -> float:\n",
    "    \"\"\"Divide a and b.\"\"\"\n",
    "    return a / b\n",
    "\n",
    "\n",
    "tools = [\n",
    "    divide,\n",
    "    extract_text\n",
    "]\n",
    "llm_with_tools = llm.bind_tools(tools, parallel_tool_calls=False)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3e7c17a2e155014e",
   "metadata": {},
   "source": [
    "Créons notre LLM et demandons-lui le comportement global souhaité de l'agent."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f31250bc1f61da81",
   "metadata": {},
   "outputs": [],
   "source": [
    "from typing import TypedDict, Annotated, Optional\n",
    "from langchain_core.messages import AnyMessage\n",
    "from langgraph.graph.message import add_messages\n",
    "\n",
    "\n",
    "class AgentState(TypedDict):\n",
    "    # Le document d'entrée\n",
    "    input_file: Optional[str]  # Contient le chemin d'accès au fichier, le type (PNG)\n",
    "    messages: Annotated[list[AnyMessage], add_messages]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3c4a736f9e55afa9",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain_core.messages import HumanMessage, SystemMessage\n",
    "from langchain_core.utils.function_calling import convert_to_openai_tool\n",
    "\n",
    "\n",
    "def assistant(state: AgentState):\n",
    "    # Message système\n",
    "    textual_description_of_tool = \"\"\"\n",
    "extract_text(img_path: str) -> str:\n",
    "    Extract text from an image file using a multimodal model.\n",
    "\n",
    "    Args:\n",
    "        img_path: A local image file path (strings).\n",
    "\n",
    "    Returns:\n",
    "        A single string containing the concatenated text extracted from each image.\n",
    "divide(a: int, b: int) -> float:\n",
    "    Divide a and b\n",
    "\"\"\"\n",
    "    image = state[\"input_file\"]\n",
    "    sys_msg = SystemMessage(content=f\"You are an helpful agent that can analyse some images and run some computatio without provided tools :\\n{textual_description_of_tool} \\n You have access to some otpional images. Currently the loaded images is : {image}\")\n",
    "\n",
    "    return {\"messages\": [llm_with_tools.invoke([sys_msg] + state[\"messages\"])], \"input_file\": state[\"input_file\"]}"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6f1efedd943d8b1d",
   "metadata": {},
   "source": [
    "Nous définissons un nœud `tools` avec notre liste d'outils.\n",
    "\n",
    "Le noeud `assistant` est juste notre modèle avec les outils liés.\n",
    "\n",
    "Nous créons un graphe avec les noeuds `assistant` et `tools`.\n",
    "\n",
    "Nous ajoutons l'arête `tools_condition`, qui route vers `End` ou vers `tools` selon que le `assistant` appelle ou non un outil.\n",
    "\n",
    "Maintenant, nous ajoutons une nouvelle étape :\n",
    "\n",
    "Nous connectons le noeud `tools` au `assistant`, formant une boucle.\n",
    "\n",
    "* Après l'exécution du noeud `assistant`, `tools_condition` vérifie si la sortie du modèle est un appel d'outil.\n",
    "* Si c'est le cas, le flux est dirigé vers le noeud `tools`.\n",
    "* Le noeud `tools` se connecte à `assistant`.\n",
    "* Cette boucle continue tant que le modèle décide d'appeler des outils.\n",
    "* Si la réponse du modèle n'est pas un appel d'outil, le flux est dirigé vers END, mettant fin au processus."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e013061de784638a",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langgraph.graph import START, StateGraph\n",
    "from langgraph.prebuilt import ToolNode, tools_condition\n",
    "from IPython.display import Image, display\n",
    "\n",
    "# Graphe\n",
    "builder = StateGraph(AgentState)\n",
    "\n",
    "# Définir les nœuds : ce sont eux qui font le travail\n",
    "builder.add_node(\"assistant\", assistant)\n",
    "builder.add_node(\"tools\", ToolNode(tools))\n",
    "\n",
    "# Définir les arêtes : elles déterminent la manière dont le flux de contrôle se déplace\n",
    "builder.add_edge(START, \"assistant\")\n",
    "builder.add_conditional_edges(\n",
    "    \"assistant\",\n",
    "    # Si le dernier message (résultat) de l'assistant est un appel d'outil -> tools_condition va vers tools\n",
    "    # Si le dernier message (résultat) de l'assistant n'est pas un appel d'outil -> tools_condition va à END\n",
    "    tools_condition,\n",
    ")\n",
    "builder.add_edge(\"tools\", \"assistant\")\n",
    "react_graph = builder.compile()\n",
    "\n",
    "# Afficher\n",
    "display(Image(react_graph.get_graph(xray=True).draw_mermaid_png()))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d3b0ba5be1a54aad",
   "metadata": {},
   "outputs": [],
   "source": [
    "messages = [HumanMessage(content=\"Divide 6790 by 5\")]\n",
    "\n",
    "messages = react_graph.invoke({\"messages\": messages, \"input_file\": None})"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "55eb0f1afd096731",
   "metadata": {},
   "outputs": [],
   "source": [
    "for m in messages['messages']:\n",
    "    m.pretty_print()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e0062c1b99cb4779",
   "metadata": {},
   "source": [
    "## Programme d'entraînement\n",
    "M. Wayne a laissé une note avec son programme d'entraînement pour la semaine. J'ai trouvé une recette pour le dîner, laissée dans une note.\n",
    "\n",
    "Vous pouvez trouver le document [ICI](https://huggingface.co/datasets/agents-course/course-images/blob/main/en/unit2/LangGraph/Batman_training_and_meals.png), alors téléchargez-le et mettez-le dans le dossier local.\n",
    "\n",
    "![Training](https://huggingface.co/datasets/agents-course/course-images/resolve/main/en/unit2/LangGraph/Batman_training_and_meals.png)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2e166ebba82cfd2a",
   "metadata": {},
   "outputs": [],
   "source": [
    "messages = [HumanMessage(content=\"According the note provided by MR wayne in the provided images. What's the list of items I should buy for the dinner menu ?\")]\n",
    "\n",
    "messages = react_graph.invoke({\"messages\": messages, \"input_file\": \"Batman_training_and_meals.png\"})"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "5bfd67af70b7dcf3",
   "metadata": {},
   "outputs": [],
   "source": [
    "for m in messages['messages']:\n",
    "    m.pretty_print()"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.7"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}