diff --git "a/fr/bonus-unit1/bonus-unit1.ipynb" "b/fr/bonus-unit1/bonus-unit1.ipynb" new file mode 100644--- /dev/null +++ "b/fr/bonus-unit1/bonus-unit1.ipynb" @@ -0,0 +1,6132 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "43b502c1-9548-4580-84ad-1cbac158edb8", + "metadata": { + "id": "43b502c1-9548-4580-84ad-1cbac158edb8" + }, + "source": [ + "# Bonus Unité 1: Finetuner un modèle pour faire de l'appel de fonctions\n", + "\n", + "Dans ce tutoriel, **nous allons finetuner un LLM pour pouvoir faire de l'appel de fonctions.**\n", + "\n", + "Ce notebook fait parti du cours sur les agents d'Hugging Face, un cours gratuit qui vous guidera, du **niveau débutant à expert**, pour comprendre, utiliser et construire des agents.\n", + "\n", + "\n", + "\"Agent\n" + ] + }, + { + "cell_type": "markdown", + "id": "gWR4Rvpmjq5T", + "metadata": { + "id": "gWR4Rvpmjq5T" + }, + "source": [ + "## Prérequis de l'exercice 🏗️\n", + "\n", + "Avant de vous plonger dans le *notebook*, vous devez :\n", + "\n", + "🔲 📚 **Etudier la section [Qu'est-ce que l'appel de fonctions ?](https://huggingface.co/learn/agents-course/fr/bonus-unit1/what-is-function-calling)**\n", + "\n", + "🔲 📚 **Etudier la section [Finetunons un modèle pour pouvoir faire de l'appel de fonctions](https://huggingface.co/learn/agents-course/fr/bonus-unit1/fine-tuning)**" + ] + }, + { + "cell_type": "markdown", + "id": "1rZXU_1wkEPu", + "metadata": { + "id": "1rZXU_1wkEPu" + }, + "source": [ + "# Étape 0 : Demande d'accès à Gemma sur Hugging Face\n", + "\n", + "\"Gemma\"/\n", + "\n", + "\n", + "Pour accéder à Gemma sur Hugging Face :\n", + "\n", + "1. **Assurez-vous d'être connecté** à votre compte Hugging Face.\n", + "\n", + "2. Allez sur https://huggingface.co/google/gemma-2-2b-it\n", + "\n", + "3. Cliquez sur **Acknowledge license** et remplissez le formulaire.\n", + "\n", + "Vous pouvez également utiliser un autre modèle et modifier le code en conséquence (cela peut être un bon exercice pour vous assurer que vous savez comment finetuner sur la tâche d'appel de fonction).\n", + "\n", + "Vous pouvez par exemple utiliser :\n", + "\n", + "- [HuggingFaceTB/SmolLM2-1.7B-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B-Instruct)\n", + "\n", + "- [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct)" + ] + }, + { + "cell_type": "markdown", + "id": "5hjyx9nJlvKG", + "metadata": { + "id": "5hjyx9nJlvKG" + }, + "source": [ + "## Étape 1 : Configurer le GPU 💪\n", + "\n", + "Si vous êtes sur Colab :\n", + "\n", + "- Pour **accélérer l'entraînement du finetuning, nous allons utiliser un GPU**. Pour cela, allez dans `Runtime > Change Runtime type`\n", + "\n", + "\"GPU\n", + "\n", + "- `Hardware Accelerator > GPU`\n", + "\n", + "\"GPU\n", + "\n", + "\n", + "### Important\n", + "\n", + "Pour cette unité, **avec le niveau gratuit de Colab** il faudra environ **6h pour entraîner**.\n", + "\n", + "Trois solutions s'offrent à vous pour accélérer le processus :\n", + "\n", + "1. Entraînez-vous sur votre ordinateur si vous avez des GPU. Cela peut prendre du temps mais il y a moins de risques de dépassement de temps.\n", + "\n", + "2. Utiliser un Google Colab Pro qui permet d'utiliser un GPU A100 (alors plus que 15-20min d'entraînement).\n", + "\n", + "3. Suivez le code pour apprendre à comment faire mais sans pouvoir entraîner." + ] + }, + { + "cell_type": "markdown", + "id": "5Thjsc9fj6Ej", + "metadata": { + "id": "5Thjsc9fj6Ej" + }, + "source": [ + "## Étape 2 : Installer les dépendances 📚\n", + "\n", + "Nous avons besoin de plusieurs bibliothèques :\n", + "\n", + "- `bitsandbytes` pour la quantification\n", + "- `peft` pour les adaptateurs LoRA\n", + "- `transformers` pour le chargement du modèle\n", + "- `datasets` pour le chargement et l'utilisation du jeu de données de finetuning\n", + "- `trl` pour la classe Trainer" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "e63f4962-c644-491e-aa91-50e453e953a4", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "e63f4962-c644-491e-aa91-50e453e953a4", + "outputId": "443077a6-7cff-4c46-90ac-bf279300f6ec", + "tags": [] + }, + "outputs": [], + "source": [ + "!pip install -q -U bitsandbytes\n", + "!pip install -q -U peft\n", + "!pip install -q -U trl\n", + "!pip install -q -U tensorboardX\n", + "!pip install -q wandb\n", + "!pip install -q -U torchvision\n", + "!pip install -q -U transformers" + ] + }, + { + "cell_type": "markdown", + "id": "UWNoZzi1urSZ", + "metadata": { + "id": "UWNoZzi1urSZ" + }, + "source": [ + "## Etape 3 : Créez votre *token* Hugging Face pour pousser votre modèle sur le Hub\n", + "\n", + "Pour pouvoir partager votre modèle avec la communauté, il y a encore quelques étapes à suivre :\n", + "\n", + "1️⃣ (Si ce n'est pas déjà fait) créez un compte sur HF ➡ https://huggingface.co/join\n", + "\n", + "2️⃣ Connectez-vous et ensuite, vous devez stocker votre *token* d'authentification du site Hugging Face.\n", + "\n", + "- Créez un nouveau *token* (https://huggingface.co/settings/tokens) **avec un rôle d'écriture**\n", + "\n", + "\"Create\n", + "\n", + "3️⃣ Stockez votre *token* dans une variable d'environnement sous le nom « HF_TOKEN »\n", + "- **Faites très attention à ne pas le partager avec d'autres personnes** !" + ] + }, + { + "cell_type": "markdown", + "id": "vBAkwg9zu6A1", + "metadata": { + "id": "vBAkwg9zu6A1" + }, + "source": [ + "## Étape 4 : Importer les bibliothèques\n", + "\n", + "N'oubliez pas de mettre votre *token* HF." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "7ad2e4c2-593e-463e-9692-8d674c541d76", + "metadata": { + "id": "7ad2e4c2-593e-463e-9692-8d674c541d76", + "tags": [] + }, + "outputs": [], + "source": [ + "from enum import Enum\n", + "from functools import partial\n", + "import pandas as pd\n", + "import torch\n", + "import json\n", + "\n", + "from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, BitsAndBytesConfig, set_seed\n", + "from datasets import load_dataset\n", + "from trl import SFTConfig, SFTTrainer\n", + "from peft import LoraConfig, TaskType\n", + "\n", + "seed = 42\n", + "set_seed(seed)\n", + "\n", + "import os\n", + "\n", + "# Mettez votre token HF ici\n", + "os.environ['HF_TOKEN']=\"hf_xxxxxxx\" # le token doit avoir un droit d'accès d'écriture" + ] + }, + { + "cell_type": "markdown", + "id": "44f30b2c-2cc0-48e0-91ca-4633e6444105", + "metadata": { + "id": "44f30b2c-2cc0-48e0-91ca-4633e6444105" + }, + "source": [ + "## Étape 5 : Traitement du jeu de données\n", + "\n", + "Afin d'entraîner le modèle, nous devons **formater les entrées en fonction de ce que nous voulons que le modèle apprenne**.\n", + "\n", + "Pour ce tutoriel, j'ai amélioré un jeu de données populaire pour l'appel de fonction \"NousResearch/hermes-function-calling-v1\" en ajoutant des étapes de **raisonnement** issues de **deepseek-ai/DeepSeek-R1-Distill-Qwen-32B**.\n", + "\n", + "Mais pour que le modèle puisse apprendre, nous devons **formater la conversation correctement**. Si vous avez suivi l'Unité 1, vous savez que le passage d'une liste de messages à un *prompt* est géré par le **chat_template**. Le chat_template par défaut de gemma-2-2B ne contient pas d'appels d'outils. Nous allons donc devoir le modifier !\n", + "\n", + "C'est le rôle de notre fonction **preprocess**. Passer d'une liste de messages à un *prompt* que le modèle peut comprendre." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "29da85c8-33bf-4864-aed7-733cbe703512", + "metadata": { + "id": "29da85c8-33bf-4864-aed7-733cbe703512", + "tags": [] + }, + "outputs": [], + "source": [ + "model_name = \"google/gemma-2-2b-it\"\n", + "dataset_name = \"Jofthomas/hermes-function-calling-thinking-V1\"\n", + "tokenizer = AutoTokenizer.from_pretrained(model_name)\n", + "\n", + "tokenizer.chat_template = \"{{ bos_token }}{% if messages[0]['role'] == 'system' %}{{ raise_exception('System role not supported') }}{% endif %}{% for message in messages %}{{ '' + message['role'] + '\\n' + message['content'] | trim + '\\n' }}{% endfor %}{% if add_generation_prompt %}{{'model\\n'}}{% endif %}\"\n", + "\n", + "\n", + "def preprocess(sample):\n", + " messages = sample[\"messages\"]\n", + " first_message = messages[0]\n", + "\n", + " # Au lieu d'ajouter un prompt système, nous fusionnons le contenu dans le premier message de l'utilisateur.\n", + " if first_message[\"role\"] == \"system\":\n", + " system_message_content = first_message[\"content\"]\n", + " # Fusionner le contenu du système avec le premier message de l'utilisateur\n", + " messages[1][\"content\"] = system_message_content + \"Also, before making a call to a function take the time to plan the function to take. Make that thinking process between {your thoughts}\\n\\n\" + messages[1][\"content\"]\n", + " # Supprimer le message système de la conversation\n", + " messages.pop(0)\n", + "\n", + " return {\"text\": tokenizer.apply_chat_template(messages, tokenize=False)}\n", + "\n", + "\n", + "\n", + "dataset = load_dataset(dataset_name)\n", + "dataset = dataset.rename_column(\"conversations\", \"messages\")" + ] + }, + { + "cell_type": "markdown", + "id": "dc8736d5-d64b-4c5c-9738-be08421d3f95", + "metadata": { + "id": "dc8736d5-d64b-4c5c-9738-be08421d3f95" + }, + "source": [ + "## Étape 6 : Un jeu de données dédié à cette Unité\n", + "\n", + "Pour cette Unité bonus, nous avons créé un jeu de données personnalisé basé sur [NousResearch/hermes-function-calling-v1](https://huggingface.co/datasets/NousResearch/hermes-function-calling-v1), qui est considéré comme une **référence** en matière de jeu de données pour l'appel de fonctions.\n", + "\n", + "Bien que le jeu de données original soit excellent, il ne **comprend pas** d'étape de **réflexion**.\n", + "\n", + "Pour de l'appel de fonction, une telle étape est optionnelle, mais des travaux récents - comme le modèle **deepseek** ou le papier [*Test-Time Compute*](https://huggingface.co/papers/2408.03314) - suggèrent que donner à un LLM le temps de « penser » avant de répondre (ou dans ce cas, **avant** d'entreprendre une action) peut **améliorer de manière significative** la performance du modèle.\n", + "\n", + "J'ai donc décidé de créer un sous-ensemble de ce jeu de données et de le donner à [deepseek-ai/DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B) afin de créer quelques *tokens* de réflexion `` avant tout appel de fonction. Ce qui a abouti au jeu de données suivant :\n", + "![Input Dataset](https://huggingface.co/datasets/agents-course/course-images/resolve/main/en/bonus-unit1/dataset_function_call.png)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "b63d4832-d92e-482d-9fe6-6e9dbfee377a", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "b63d4832-d92e-482d-9fe6-6e9dbfee377a", + "outputId": "547d58fc-cf84-4878-f66e-ae817030a251", + "tags": [] + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "b2ee958727314c8186af7ee5e5da64aa", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Map: 0%| | 0/3570 [00:00` puis la requête de l'utilisateur, ici : `\"Can you get me the latest news headlines for the United States?\"` (`« Pouvez-vous me donner les derniers titres de l'actualité pour les Etats-Unis ? »`)\n", + "\n", + "2. Un *message assistant* appelé ici « modèle » pour répondre aux critères des modèles gemma contenant deux nouvelles phases, une phase **« penser »** contenue dans `` et une phase **« agir »** contenue dans ``.\n", + "\n", + "3. Si le modèle contient un ``, nous ajouterons le résultat de cette action dans un nouveau message **« Tool »** contenant un `` avec la réponse de l'outil." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "dc60da04-9411-487a-b629-2c59024a20c0", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "dc60da04-9411-487a-b629-2c59024a20c0", + "outputId": "8af76a10-5a72-4401-cdf5-ee047fc2d850", + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "human\n", + "You are a function calling AI model. You are provided with function signatures within XML tags.You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions.Here are the available tools: [{'type': 'function', 'function': {'name': 'get_news_headlines', 'description': 'Get the latest news headlines', 'parameters': {'type': 'object', 'properties': {'country': {'type': 'string', 'description': 'The country for which headlines are needed'}}, 'required': ['country']}}}, {'type': 'function', 'function': {'name': 'search_recipes', 'description': 'Search for recipes based on ingredients', 'parameters': {'type': 'object', 'properties': {'ingredients': {'type': 'array', 'items': {'type': 'string'}, 'description': 'The list of ingredients'}}, 'required': ['ingredients']}}}] Use the following pydantic model json schema for each tool call you will make: {'title': 'FunctionCall', 'type': 'object', 'properties': {'arguments': {'title': 'Arguments', 'type': 'object'}, 'name': {'title': 'Name', 'type': 'string'}}, 'required': ['arguments', 'name']}For each function call return a json object with function name and arguments within XML tags as follows:\n", + "\n", + "{tool_call}\n", + "Also, before making a call to a function take the time to plan the function to take. Make that thinking process between {your thoughts}\n", + "\n", + "Can you get me the latest news headlines for the United States?\n", + "model\n", + "Okay, so the user asked for the latest news headlines in the United States. I need to figure out how to respond appropriately using the tools available.\n", + "\n", + "Looking at the tools provided, there's a function called get_news_headlines. That seems perfect for this situation. It requires a country code, which the user specified as the United States.\n", + "\n", + "Since the user is asking specifically about the US, I'll use the country parameter as 'United States' in the function call. This should fetch the relevant news for them.\n", + "\n", + "I should make sure to format the response correctly as a JSON object with the function name and arguments.\n", + "\n", + "{'name': 'get_news_headlines', 'arguments': {'country': 'United States'}}\n", + "\n", + "tool\n", + "\n", + "{'headlines': ['US President signs new bill into law', 'Major earthquake hits California', 'NASA announces new Mars mission', 'Tech giant releases new smartphone', 'US economy shows signs of recovery']}\n", + "\n", + "model\n", + "Here are the latest news headlines for the United States:\n", + "1. US President signs new bill into law\n", + "2. Major earthquake hits California\n", + "3. NASA announces new Mars mission\n", + "4. Tech giant releases new smartphone\n", + "5. US economy shows signs of recovery\n", + "human\n", + "That's interesting. Can you get me the news for France now?\n", + "model\n", + "Okay, the user initially asked for the latest US news, so I used get_news_headlines with 'United States'. Now the user is asking for France, so I'll call the same function with 'France' as the country. That makes sense because the function is designed for any country.\n", + "\n", + "{'name': 'get_news_headlines', 'arguments': {'country': 'France'}}\n", + "\n", + "tool\n", + "\n", + "{'headlines': ['French President announces new environmental policy', 'Paris Fashion Week highlights', 'France wins World Cup qualifier', 'New culinary trend sweeps across France', 'French tech startup raises millions in funding']}\n", + "\n", + "model\n", + "Here are the latest news headlines for France:\n", + "1. French President announces new environmental policy\n", + "2. Paris Fashion Week highlights\n", + "3. France wins World Cup qualifier\n", + "4. New culinary trend sweeps across France\n", + "5. French tech startup raises millions in funding\n", + "\n" + ] + } + ], + "source": [ + "# Voyons comment nous avons formaté le jeu de données\n", + "print(dataset[\"train\"][8][\"text\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "53a48281-2346-4dfb-ad60-cad85129ec9b", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "53a48281-2346-4dfb-ad60-cad85129ec9b", + "outputId": "e16c07f9-8bbf-4c82-d2d3-41d96a95ab2e", + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\n" + ] + } + ], + "source": [ + "# Contrôle \n", + "print(tokenizer.pad_token)\n", + "print(tokenizer.eos_token)" + ] + }, + { + "cell_type": "markdown", + "id": "d6864b36-6033-445a-b6e2-b6bb02e38e26", + "metadata": { + "id": "d6864b36-6033-445a-b6e2-b6bb02e38e26" + }, + "source": [ + "## Étape 8 : Modifions le *tokenizer*\n", + "\n", + "En effet, comme nous l'avons vu dans l'Unité 1, le *tokenizer* divise le texte en sous-mots par défaut. Ce n'est **pas** ce que nous voulons pour nos nouveaux *tokens* spéciaux !\n", + "\n", + "Bien que nous ayons segmenté notre exemple en utilisant ``, ``, et ``, le *tokenizer* ne les traite **pas** encore comme des *tokens* entiers - il essaie toujours de les décomposer en plus petits morceaux. Pour s'assurer que le modèle interprète correctement notre nouveau format, nous devons **ajouter ces *tokens*** à notre *tokenizer*.\n", + "\n", + "De plus, puisque nous avons changé le `chat_template` dans notre fonction **preprocess** pour formater les conversations comme des messages dans un *prompt*, nous devons aussi modifier le `chat_template` dans le *tokenizer* pour refléter ces changements." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "833ba5d6-4c1e-4689-9fed-22cc03d2a63a", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 754, + "referenced_widgets": [ + "54fc2d9962de4ffda0500a01e112b58a", + "8e70cccb0fb04a43b3c6ab234bcae9a8", + "f2d87447fe8448c7baff656c540620e6", + "5f438fbbfb60436faf79662e81092154", + "197619158cd247649eac3722284c8d19", + "1d104fe8612f45e4810bbed7e3540330", + "d62425b0d0ea497ead2cd981eaa61c7e", + "2828b2455ec44143a5739c8e8207fb9b", + "03b839beea6a4f6b8d9005491146615d", + "0db5d5c516d7479ebf7603093f9e1e99", + "654fd18a9e59415e9dd314dc2f94a654", + "deba87fc28db4f78b58fc1e456fea335", + "f06414fa35b64ff588511796c9b51d1f", + "21cf377576154ffeb028f4ae3b3503d5", + "5c8fa13e559942849a61d9480be730bd", + "fae24e4a14814c7ebef30b422c2d3652", + "1981ff353e494735be4706a76053c24a", + "9a8b33ef0f6c446496cc7dae07da321c", + "2b8c9e43da4e4e008a2a2b06e6f3106e", + "62f3a32c4f484dd6899ba5d6ffbaca11", + "1e271fcb92a14680b84c33cb7c28f9c0", + "da543c28b9e44723b019220de8427b5e", + "ce3c69ec86224ffea8c46deb20831bb7", + "3bb2805fcf0441089c0f4789e28b072d", + "bc6e638133f545ff8d54f767de0cb35a", + "6e1393f9f39a4b3cb94753c883b1bbf7", + "a76145e51f7544fdabd23198baf318c4", + "eedc1213dd604bbe827dcec617fdae34", + "f73f91bb567a48f890ba0827b7ed321f", + "a8edc3a5b0d9422b8e2e63d5564cfdc9", + "e08c970bbf4540a89533a43f719f68e4", + "fe30dac330db4fde94af1c54c84a1be8", + "4cfce958cf5445129ab6281784664038", + "71ba28670e8d4583b66b1c1587cdbce1", + "4349fab6f16343cb8955367f6fbc4a43", + "6296f0c3ac5647e9b9cbc7c8212a2b35", + "c6d97ccbecb0407f89ef4469f3874e74", + "ccabb079b6fd466fb877a018aebf793c", + "0ff4d8414af94af59628b0417a40cc7d", + "534a5dc9cd7e475db2be613849959fc7", + "b821e13722e24feb941fa31a604a85e9", + "91c21b2b127640e195f2e7c7256b5a0e", + "1296a8a4baea4faabc62a42b2ca1a53a", + "13b49790234c4d1aa8fe9b532fcf95bf", + "e1ef7211c5554b2f8fdd39f2f846d2d9", + "9ac674eeba0542e7b4e28a13e90ce652", + "cc4993f1af6b4f2685ecbced238b8913", + "5ec98ede3fbf4c64843b935ce3ad28a7", + "bdbd9e7e1d674edeab47e3595f6af4f8", + "2eb5230a43e84790b0392db58157b0f1", + "26bd63db6a384c12b7d42bf95ca1d1bc", + "6f4e106bb5b44f398a1fe4ac588f6cca", + "0c881b9322624d70bb2c5147a5422633", + "ec8ecb8bdee4435fbc97d73863ebd9f8", + "1af481e6544a4fa386815218461cd5c3", + "2f73c87217c84bd293a5ea5b4aba0ae5", + "6883c5e46d3948649488d3e9f81ddb9c", + "d0498872e00f4644847e073c6000a111", + "482f477cc2354d9da6a8c2932bb73e98", + "1c810f5364544762a3093e1a0a9c1e5b", + "681019ca1d084d9692f5085d1df520ae", + "b1bb9bcec30144a380fa4fe440c41d7c", + "425fe267a38748ea9670a0996b802bdc", + "95eebbfed6fc41d6a8c668abe1608756", + "51b42c72bc2b428fbc0389bfd4d9e598", + "611a6d951d2a42b9b650496612cfd484", + "a893802af41d4400b35b9cb71add1387", + "45e867ccde7d4b5bb4ed4861d723a758", + "f5e196c908e7491982773d3231fff3e6", + "68baf2700f614be288bf35e54d207096", + "001b32600fdd418bb30c6b5ff85e269c", + "2bcef869f1814a04bbbed73df7a9ab24", + "e3bd52cd621e4d2196e94327324722c4", + "1e9d8fccba9a468291ffe271b3497830", + "d1d376228c334c5999143b905e234ffc", + "fc9a32511862493e980682b6ff5044bb", + "538f6a3c632f431fa9d16ab17383a602" + ] + }, + "id": "833ba5d6-4c1e-4689-9fed-22cc03d2a63a", + "outputId": "3138107e-a2cd-447d-ee69-e07e401a1540", + "tags": [] + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "bedabbdf4cf44865a83fc9702391c298", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Loading checkpoint shards: 0%| | 0/2 [00:00\"\n", + " eotools = \"\"\n", + " think = \"\"\n", + " eothink = \"\"\n", + " tool_call=\"\"\n", + " eotool_call=\"\"\n", + " tool_response=\"\"\n", + " eotool_response=\"\"\n", + " pad_token = \"\"\n", + " eos_token = \"\"\n", + " @classmethod\n", + " def list(cls):\n", + " return [c.value for c in cls]\n", + "\n", + "tokenizer = AutoTokenizer.from_pretrained(\n", + " model_name,\n", + " pad_token=ChatmlSpecialTokens.pad_token.value,\n", + " additional_special_tokens=ChatmlSpecialTokens.list()\n", + " )\n", + "tokenizer.chat_template = \"{{ bos_token }}{% if messages[0]['role'] == 'system' %}{{ raise_exception('System role not supported') }}{% endif %}{% for message in messages %}{{ '' + message['role'] + '\\n' + message['content'] | trim + '\\n' }}{% endfor %}{% if add_generation_prompt %}{{'model\\n'}}{% endif %}\"\n", + "\n", + "model = AutoModelForCausalLM.from_pretrained(model_name,\n", + " attn_implementation='eager',\n", + " device_map=\"auto\")\n", + "model.resize_token_embeddings(len(tokenizer))\n", + "model.to(torch.bfloat16)\n" + ] + }, + { + "cell_type": "markdown", + "id": "X6DBY8AqxFLL", + "metadata": { + "id": "X6DBY8AqxFLL" + }, + "source": [ + "## Étape 9 : Configurons notre LoRA\n", + "\n", + "Nous allons définir les paramètres de notre adaptateur. Ce sont les paramètres les plus importants du LoRA car ils définissent la taille et l'importance des adaptateurs que nous entraînons." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "482d36ab-e326-4fd7-bc59-425abcca55e7", + "metadata": { + "id": "482d36ab-e326-4fd7-bc59-425abcca55e7", + "tags": [] + }, + "outputs": [], + "source": [ + "from peft import LoraConfig\n", + "\n", + "# TODO : Configurer les paramètres du LoRA\n", + "# r : dimension du rang des matrices de mise à jour du LoRA (plus petit = plus de compression)\n", + "rank_dimension = 16\n", + "# lora_alpha: facteur d'échelle pour les couches LoRA (plus élevé = adaptation plus forte)\n", + "lora_alpha = 64\n", + "# lora_dropout: probabilité du dropout pour les couches LoRA (aide à prévenir le surentraînement)\n", + "lora_dropout = 0.05\n", + "\n", + "peft_config = LoraConfig(r=rank_dimension,\n", + " lora_alpha=lora_alpha,\n", + " lora_dropout=lora_dropout,\n", + " target_modules=[\"gate_proj\",\"q_proj\",\"lm_head\",\"o_proj\",\"k_proj\",\"embed_tokens\",\"down_proj\",\"up_proj\",\"v_proj\"], # quelle couche du transformer devons-nous cibler ?\n", + " task_type=TaskType.CAUSAL_LM)" + ] + }, + { + "cell_type": "markdown", + "id": "zdDR9hzgxPu2", + "metadata": { + "id": "zdDR9hzgxPu2" + }, + "source": [ + "## Étape 10 : Définissons le Trainer et les hyperparamètres du finetuning\n", + "\n", + "Dans cette étape, nous définissons le Trainer, la classe que nous utilisons pour finetuner notre modèle et les hyperparamètres." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "3598b688-5a6f-437f-95ac-4794688cd38f", + "metadata": { + "id": "3598b688-5a6f-437f-95ac-4794688cd38f", + "tags": [] + }, + "outputs": [], + "source": [ + "username=\"Jofthomas\"# REMPLACER par votre nom d'utilisateur Hugging Face\n", + "output_dir = \"gemma-2-2B-it-thinking-function_calling-V0\" # Le répertoire où les checkpoints du modèle entraîné, les logs et les autres artefacts seront sauvegardés. Il sera également le nom par défaut du modèle lorsqu'il sera poussé vers le hub s'il n'est pas redéfini ultérieurement\n", + "per_device_train_batch_size = 1\n", + "per_device_eval_batch_size = 1\n", + "gradient_accumulation_steps = 4\n", + "logging_steps = 5\n", + "learning_rate = 1e-4 # Le taux d'apprentissage initial de l'optimiseur\n", + "\n", + "max_grad_norm = 1.0\n", + "num_train_epochs=1\n", + "warmup_ratio = 0.1\n", + "lr_scheduler_type = \"cosine\"\n", + "max_seq_length = 1500\n", + "\n", + "training_arguments = SFTConfig(\n", + " output_dir=output_dir,\n", + " per_device_train_batch_size=per_device_train_batch_size,\n", + " per_device_eval_batch_size=per_device_eval_batch_size,\n", + " gradient_accumulation_steps=gradient_accumulation_steps,\n", + " save_strategy=\"no\",\n", + " eval_strategy=\"epoch\",\n", + " logging_steps=logging_steps,\n", + " learning_rate=learning_rate,\n", + " max_grad_norm=max_grad_norm,\n", + " weight_decay=0.1,\n", + " warmup_ratio=warmup_ratio,\n", + " lr_scheduler_type=lr_scheduler_type,\n", + " report_to=\"tensorboard\",\n", + " bf16=True,\n", + " hub_private_repo=False,\n", + " push_to_hub=False,\n", + " num_train_epochs=num_train_epochs,\n", + " gradient_checkpointing=True,\n", + " gradient_checkpointing_kwargs={\"use_reentrant\": False},\n", + " packing=True,\n", + " max_seq_length=max_seq_length,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "59TTqmW2xmV2", + "metadata": { + "id": "59TTqmW2xmV2" + }, + "source": [ + "Comme Trainer, nous utilisons le `SFTTrainer` (Supervised Fine-Tuning Trainer) pour du finetuning supervisé." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "ba0366b5-c9d0-4f7e-97e0-1f964cfad147", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 263, + "referenced_widgets": [ + "e3fe61834c3e49a3895212a336776f9d", + "472cbf91b24f46829960d68e2316c417", + "bd746ea2e46a491e954ac6f32fb0e45b", + "b1542891fc6243d98d51981dd0584bdf", + "b2e16ad7540d4760b28f3a8c419905f8", + "f2157c83879046a29b72613bce9de56e", + "3b07ec7f4d024b61abe94c8adeebed55", + "e6f810bd430245b190ee932554cca05c", + "952893c941c346c2aedcd9358859a3b9", + "d36e7dd4b9dc497faa6e8f63843a738f", + "f469ec8c79ac476c82a5e228f347bffa", + "e9de72aadc5743a2b56537b3ad035461", + "57d137229091486dbf0e4b7dd6dce98a", + "4d006dc72b2b45b58caf4d398c3756b8", + "36bbd4bd563a4053a7af8532300253b7", + "cacc3c3a10c64b338866a8e42201e44c", + "b4c43d908bd64d9bbdb488dac46d2e45", + "96691a6287ef401582a2a1744a4940c4", + "328fa6d902bd46bbb0ecdc7404a13e8c", + "f375fed157034dfcbd28744027d77eba", + "33ec043a635f4e99b67cd6f7e6fc6193", + "39fee7a249c146d1a166e58755c1cda8", + "2ccddb85840c4981ae089ae4c74a2de6", + "89eee480405a416ba0edf097423724b9", + "56e8079c374a4f3f9af5ef96a73f2955", + "3aeb28bc164444d7afb7bf7435a001f2", + "1ead218e71614374909b92fda097fd42", + "822bea0ac84d4ff29d984bf5f5d2c3a2", + "ecef440c871b4daba34661a1ddba6b0c", + "e633387b1640461e82617c1702ee82f5", + "26484831a87a4b489e1288ea71ea7767", + "9f8d631358e240f982e31171d1bd9f26", + "a0c7029819414c5dacefed93194cd763", + "f4a01e54ec53475585eaa88b3a272b4b", + "63c269b37eed4d348f9ce24eef15fc15", + "a89230859593424e960047a96977c6b8", + "91163fcffc60438cb39b0eb586dac418", + "89033e9c0dd249db9dc9a3b1e215dded", + "73c9d510c8754f2ea21adf318e35bc8e", + "0fe7751f55134695afb44bf8673dd4d9", + "f7dd34e15348462297564f0e6e0b568d", + "537e188c000041fea6adf26f2255d738", + "39fff32b9756437581228465165a3115", + "4f75329d3e8d4cc38a405c1c4cc51d70", + "8bbe22288edf4a06b2c56952fd81d5e7", + "298f092855f14af79ec2eda792732810", + "2e6392b95f8a48568a89780adf76387f", + "55e72b7f262b4f57a6abb1c9f01c8de2", + "9fbca7fa0d6b4fff910b806a97fa7718", + "a385bba49b514ab386cb5f4cbb01821f", + "78a34eb9cd534c3d84c8f22d3c53c88f", + "cee71fbbf8a04b3bb64b96e7fa2b0b0e", + "0a0bc95f445948f486fbce865a4642f2", + "b782092e2282488ba86f85eebe697603", + "f7ba9e0f4e64484a82374bb5f1d12b15", + "39c0963803c74ebab07cec20e10d0184", + "46b69fb951af44f99232f459daa4f103", + "3e23b4c5848843fcb44dc0ae2f157d66", + "c9f86634a6bf4e49a902e3d42e67f1bd", + "03b8a027c56f4b52a3e54f57bb5bb526", + "58a18918bae34aca8ec73ae89fd5bc24", + "fd6e1776cbcd4f7b96ec6d9754eb2c83", + "b5121cada3514b67a9c533e7468b3058", + "bf70daf78057419b8a78af75a093a3dd", + "e0b3b3c072be44de8e0a2dae91598aa6", + "4e21f1bd903443a89dea32bb3f3c26a9" + ] + }, + "id": "ba0366b5-c9d0-4f7e-97e0-1f964cfad147", + "outputId": "5602ad04-17c4-431b-e20d-7f0d0c7fd24e", + "tags": [] + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/user/miniconda/lib/python3.9/site-packages/peft/tuners/tuners_utils.py:543: UserWarning: Model with `tie_word_embeddings=True` and the tied_target_modules=['lm_head'] are part of the adapter. This can lead to complications, for example when merging the adapter or converting your model to formats other than safetensors. See for example https://github.com/huggingface/peft/issues/2018.\n", + " warnings.warn(\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "be2be97d4aa64b23beaf316024229a3b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Applying chat template to train dataset: 0%| | 0/100 [00:00\n", + " \n", + " \n", + " [12/12 00:24, Epoch 1/1]\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
EpochTraining LossValidation Loss
11.2368001.240833

" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/user/miniconda/lib/python3.9/site-packages/peft/utils/save_and_load.py:230: UserWarning: Setting `save_embedding_layers` to `True` as embedding layers found in `target_modules`.\n", + " warnings.warn(\"Setting `save_embedding_layers` to `True` as embedding layers found in `target_modules`.\")\n" + ] + } + ], + "source": [ + "trainer.train()\n", + "trainer.save_model()" + ] + }, + { + "cell_type": "markdown", + "id": "1d7ea3ab-7c8c-47ad-acd2-99fbe5b68393", + "metadata": { + "id": "1d7ea3ab-7c8c-47ad-acd2-99fbe5b68393", + "tags": [] + }, + "source": [ + "## Etape 11 : Poussons le modèle et le *tokenizer* sur le Hub\n", + "\n", + "Poussons notre modèle et notre *tokenizer* sur le Hub ! Le modèle sera poussé sous votre nom d'utilisateur + le répertoire de sortie que nous avons spécifié plus tôt." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "370af020-9319-4ff7-bea1-2842a4847caa", + "metadata": { + "id": "370af020-9319-4ff7-bea1-2842a4847caa", + "tags": [] + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "00c6c786a8014635952d94bb505923f1", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "events.out.tfevents.1739887545.r-jofthomas-fttest-kff5bkw4-24c03-yhiku: 0%| | 0.00/6.88k [00:00\"\n", + "# pousser le tokenizer sur le hub (remplacer par votre nom d'utilisateur et votre nom d'utilisateur spécifié précédemment)\n", + "tokenizer.push_to_hub(f\"{username}/{output_dir}\", token=True)" + ] + }, + { + "cell_type": "markdown", + "id": "76d275ce-a3e6-4d30-8d8c-0ee274de5370", + "metadata": { + "id": "76d275ce-a3e6-4d30-8d8c-0ee274de5370" + }, + "source": [ + "## Étape 12 : Testons maintenant notre modèle !\n", + "\n", + "Pour cela, nous allons :\n", + "\n", + "1. Charger l'adaptateur partir du Hub !\n", + "2. Charger le modèle de base : **« google/gemma-2-2b-it »** depuis le Hub\n", + "3. Redimensionner le modèle avec les nouveaux *tokens* que nous avons introduits !" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "56b89825-70ac-42c1-934c-26e2d54f3b7b", + "metadata": { + "colab": { + "referenced_widgets": [ + "390c54434b6448b988ce015eeafe34c9", + "35b2fe2d357b46488ccef710f2a9bfd7", + "9c313149d4324bdaa9c8ddc373964d18" + ] + }, + "id": "56b89825-70ac-42c1-934c-26e2d54f3b7b", + "outputId": "a4cd00b8-61fa-4522-d563-c4ef7e18807d", + "tags": [] + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4c2546e08a424179af511d8abe3c1c7d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "adapter_config.json: 0%| | 0.00/829 [00:00human\n", + "You are a function calling AI model. You are provided with function signatures within XML tags.You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions.Here are the available tools: [{'type': 'function', 'function': {'name': 'convert_currency', 'description': 'Convert from one currency to another', 'parameters': {'type': 'object', 'properties': {'amount': {'type': 'number', 'description': 'The amount to convert'}, 'from_currency': {'type': 'string', 'description': 'The currency to convert from'}, 'to_currency': {'type': 'string', 'description': 'The currency to convert to'}}, 'required': ['amount', 'from_currency', 'to_currency']}}}, {'type': 'function', 'function': {'name': 'calculate_distance', 'description': 'Calculate the distance between two locations', 'parameters': {'type': 'object', 'properties': {'start_location': {'type': 'string', 'description': 'The starting location'}, 'end_location': {'type': 'string', 'description': 'The ending location'}}, 'required': ['start_location', 'end_location']}}}] Use the following pydantic model json schema for each tool call you will make: {'title': 'FunctionCall', 'type': 'object', 'properties': {'arguments': {'title': 'Arguments', 'type': 'object'}, 'name': {'title': 'Name', 'type': 'string'}}, 'required': ['arguments', 'name']}For each function call return a json object with function name and arguments within XML tags as follows:\n", + "\n", + "{tool_call}\n", + "Also, before making a call to a function take the time to plan the function to take. Make that thinking process between {your thoughts}\n", + "\n", + "Hi, I need to convert 500 USD to Euros. Can you help me with that?\n", + "model\n", + "Alright, so I'm looking at this scenario where the user needs help converting 500 USD to Euros. Let's break it down step by step to understand how to approach this.\n", + "\n", + "First, the user has asked for conversion from USD to EUR. I know there's a specific tool available for currency conversion called `convert_currency`. This tool requires three parameters: amount, from_currency, and to_currency. In the user's message, they've provided all necessary details—500 USD and the desire to convert to Euros. \n", + "\n", + "I don't need to make any assumptions here because the user has already provided the exact amount and the target currency. My next step is to prepare the function call with the correct parameters. So, I'll structure the request with the amount as 500, from_currency as USD, and to_currency as EUR. \n", + "\n", + "This will be sent in JSON format as specified, ensuring that the tool receives all the necessary information to perform the conversion accurately. Once the function is called, it should return the converted amount, which I can then present back to the user.\n", + "\n", + "{'name': 'convert_currency', 'arguments': {'amount': 500, 'from_currency': 'USD', 'to_currency': 'EUR'}}\n", + "\n", + "tool\n", + "\n", + "{'converted_amount': 420.5, 'from_currency': 'USD', 'to_currency': 'EUR'}\n", + "\n", + "model\n", + "Sure, 500 USD is approximately 420.50 Euros.\n", + "human\n", + "That's great! Now, can you convert 1000 Euros back to USD?\n", + "model\n", + "Okay, so I'm trying to figure out how to handle the next function call based on the conversation and the previous steps. Let me see...\n", + "\n", + "In the conversation, the user first asked to convert 500 USD to Euros, and the model used the `convert_currency` function with the parameters amount=500, from_currency=USD, to_currency=EUR. Then, after getting the response, the model provided the converted amount. Now, the user is asking to convert 1000 Euros back to USD. \n", + "\n", + "So, the user's request is clear: convert 1000 EUR to USD. Since the function `convert_currency` is designed to handle currency conversions, and it requires amount, from_currency, and to_currency as parameters, it makes sense to call this function again with the updated values. \n", + "\n", + "The amount is 1000, from_currency should be EUR because the user is converting from Euros, and to_currency should be USD because they want the result in US Dollars. I don't need to make any assumptions here because all the required information is provided by the user. \n", + "\n", + "I'll structure the function call with these parameters. This should give the user the accurate converted amount from Euros to USD. Once the tool processes this, the model can present the result back to the user.\n", + "\n", + "{'name': 'convert_currency', 'arguments': {'amount': 1000, 'from_currency': 'EUR', 'to_currency': 'USD'}}\n", + "\n", + "tool\n", + "\n", + "{'converted_amount': 1190.0, 'from_currency': 'EUR', 'to_currency': 'USD'}\n", + "\n", + "model\n", + "1000 Euros is approximately 1190.00 USD.\n", + "human\n", + "Thank you for your help!\n", + "model\n", + "You're welcome! If you have any other questions, feel free to ask.\n", + "\n" + ] + } + ], + "source": [ + "print(dataset[\"test\"][8][\"text\"])" + ] + }, + { + "cell_type": "markdown", + "id": "b47fd511-ea00-47ce-8618-6e78e25672b2", + "metadata": { + "id": "b47fd511-ea00-47ce-8618-6e78e25672b2" + }, + "source": [ + "### Test du modèle 🚀\n", + "\n", + "Dans ce cas, nous prendrons le début de l'un des échantillons du jeu de test et nous espérons qu'il générera la sortie attendue.\n", + "\n", + "Puisque nous voulons tester les capacités d'appel de fonctions de notre modèle finetuné, l'entrée sera un message d'utilisateur avec les outils disponibles, un message de l'utilisateur et un message de l'utilisateur.\n", + "\n", + "\n", + "### Avertissement ⚠️\n", + "\n", + "Le jeu de données que nous utilisons **ne contient pas suffisamment de données d'entraînement** et est purement **à des fins éducatives**. Par conséquent, **les résultats de votre modèle entraîné peuvent différer** des exemples montrés dans ce cours. **Ne vous découragez pas** si vos résultats varient - notre objectif principal est d'illustrer les concepts de base plutôt que de produire un modèle entièrement optimisé ou prêt pour la production." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "37bf938d-08fa-4577-9966-0238339afcdb", + "metadata": { + "id": "37bf938d-08fa-4577-9966-0238339afcdb", + "outputId": "e97e7a1e-5ab2-46a2-dc3a-f436964fe004", + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "human\n", + "You are a function calling AI model. You are provided with function signatures within XML tags.You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions.Here are the available tools: [{'type': 'function', 'function': {'name': 'convert_currency', 'description': 'Convert from one currency to another', 'parameters': {'type': 'object', 'properties': {'amount': {'type': 'number', 'description': 'The amount to convert'}, 'from_currency': {'type': 'string', 'description': 'The currency to convert from'}, 'to_currency': {'type': 'string', 'description': 'The currency to convert to'}}, 'required': ['amount', 'from_currency', 'to_currency']}}}, {'type': 'function', 'function': {'name': 'calculate_distance', 'description': 'Calculate the distance between two locations', 'parameters': {'type': 'object', 'properties': {'start_location': {'type': 'string', 'description': 'The starting location'}, 'end_location': {'type': 'string', 'description': 'The ending location'}}, 'required': ['start_location', 'end_location']}}}] Use the following pydantic model json schema for each tool call you will make: {'title': 'FunctionCall', 'type': 'object', 'properties': {'arguments': {'title': 'Arguments', 'type': 'object'}, 'name': {'title': 'Name', 'type': 'string'}}, 'required': ['arguments', 'name']}For each function call return a json object with function name and arguments within XML tags as follows:\n", + "\n", + "{tool_call}\n", + "Also, before making a call to a function take the time to plan the function to take. Make that thinking process between {your thoughts}\n", + "\n", + "Hi, I need to convert 500 USD to Euros. Can you help me with that?\n", + "model\n", + "Okay, so the user is asking to convert 500 USD to Euros. I need to figure out how to respond using the available functions. Let me look at the tools provided. There's a function called convert_currency which does exactly that—it converts one currency to another. The parameters required are amount, from_currency, and to_currency. \n", + "\n", + "The user provided the amount as 500, the source currency as USD, and the target currency as EUR. That fits perfectly with the function's parameters. I don't need to make any assumptions here because the user has given all the necessary details. \n", + "\n", + "So, I should call the convert_currency function with these arguments. That should give the user the converted amount they need.\n", + "\n", + "{'name': 'convert_currency', 'arguments': {'amount': 500, 'from_currency': 'USD', 'to_currency': 'EUR'}}\n", + "\n" + ] + } + ], + "source": [ + "# Ce prompt est un sous-échantillon de l'un des exemples du jeu de test. Dans cet exemple, nous démarrons la génération après le début de la génération du modèle.\n", + "prompt=\"\"\"human\n", + "You are a function calling AI model. You are provided with function signatures within XML tags. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions.Here are the available tools: [{'type': 'function', 'function': {'name': 'convert_currency', 'description': 'Convert from one currency to another', 'parameters': {'type': 'object', 'properties': {'amount': {'type': 'number', 'description': 'The amount to convert'}, 'from_currency': {'type': 'string', 'description': 'The currency to convert from'}, 'to_currency': {'type': 'string', 'description': 'The currency to convert to'}}, 'required': ['amount', 'from_currency', 'to_currency']}}}, {'type': 'function', 'function': {'name': 'calculate_distance', 'description': 'Calculate the distance between two locations', 'parameters': {'type': 'object', 'properties': {'start_location': {'type': 'string', 'description': 'The starting location'}, 'end_location': {'type': 'string', 'description': 'The ending location'}}, 'required': ['start_location', 'end_location']}}}] Use the following pydantic model json schema for each tool call you will make: {'title': 'FunctionCall', 'type': 'object', 'properties': {'arguments': {'title': 'Arguments', 'type': 'object'}, 'name': {'title': 'Name', 'type': 'string'}}, 'required': ['arguments', 'name']}For each function call return a json object with function name and arguments within XML tags as follows:\n", + "\n", + "{tool_call}\n", + "Also, before making a call to a function take the time to plan the function to take. Make that thinking process between {your thoughts}\n", + "\n", + "Hi, I need to convert 500 USD to Euros. Can you help me with that?\n", + "model\n", + "\"\"\"\n", + "\n", + "inputs = tokenizer(prompt, return_tensors=\"pt\", add_special_tokens=False)\n", + "inputs = {k: v.to(\"cuda\") for k,v in inputs.items()}\n", + "outputs = model.generate(**inputs,\n", + " max_new_tokens=300,# A adapter si nécessaire\n", + " do_sample=True,\n", + " top_p=0.95,\n", + " temperature=0.01,\n", + " repetition_penalty=1.0,\n", + " eos_token_id=tokenizer.eos_token_id)\n", + "print(tokenizer.decode(outputs[0]))" + ] + }, + { + "cell_type": "markdown", + "id": "xWewPCZOyfJQ", + "metadata": { + "id": "xWewPCZOyfJQ" + }, + "source": [ + "## Félicitations\n", + "Félicitations pour avoir terminé cette première unité bonus 🥳\n", + "\n", + "Vous venez de **voir ce qu'est l'appel de fonction et comment finetuner votre modèle pour faire de l'appel de fonction** !\n", + "\n", + "Si c'est la première fois que vous faites cela, il est normal que vous vous sentiez dérouté. Prenez le temps de consulter la documentation et de comprendre chaque partie du code et pourquoi nous l'avons fait de cette façon.\n", + "\n", + "N'hésitez pas non plus à essayer **de finetuner différents modèles**. La **meilleure façon d'apprendre est d'essayer**.\n", + "\n", + "### Continuez à apprendre, restez géniaux 🤗" + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "gpuType": "T4", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.7" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "001b32600fdd418bb30c6b5ff85e269c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "03b839beea6a4f6b8d9005491146615d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "03b8a027c56f4b52a3e54f57bb5bb526": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0a0bc95f445948f486fbce865a4642f2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0c881b9322624d70bb2c5147a5422633": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0db5d5c516d7479ebf7603093f9e1e99": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0fe7751f55134695afb44bf8673dd4d9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "0ff4d8414af94af59628b0417a40cc7d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1296a8a4baea4faabc62a42b2ca1a53a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "13b49790234c4d1aa8fe9b532fcf95bf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "197619158cd247649eac3722284c8d19": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1981ff353e494735be4706a76053c24a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1af481e6544a4fa386815218461cd5c3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1c810f5364544762a3093e1a0a9c1e5b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1d104fe8612f45e4810bbed7e3540330": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1e271fcb92a14680b84c33cb7c28f9c0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1e9d8fccba9a468291ffe271b3497830": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1ead218e71614374909b92fda097fd42": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "21cf377576154ffeb028f4ae3b3503d5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2b8c9e43da4e4e008a2a2b06e6f3106e", + "max": 24223, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_62f3a32c4f484dd6899ba5d6ffbaca11", + "value": 24223 + } + }, + "26484831a87a4b489e1288ea71ea7767": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "26bd63db6a384c12b7d42bf95ca1d1bc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2828b2455ec44143a5739c8e8207fb9b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "298f092855f14af79ec2eda792732810": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a385bba49b514ab386cb5f4cbb01821f", + "placeholder": "​", + "style": "IPY_MODEL_78a34eb9cd534c3d84c8f22d3c53c88f", + "value": "Tokenizing eval dataset: 100%" + } + }, + "2b8c9e43da4e4e008a2a2b06e6f3106e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2bcef869f1814a04bbbed73df7a9ab24": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2ccddb85840c4981ae089ae4c74a2de6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_89eee480405a416ba0edf097423724b9", + "IPY_MODEL_56e8079c374a4f3f9af5ef96a73f2955", + "IPY_MODEL_3aeb28bc164444d7afb7bf7435a001f2" + ], + "layout": "IPY_MODEL_1ead218e71614374909b92fda097fd42" + } + }, + "2e6392b95f8a48568a89780adf76387f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cee71fbbf8a04b3bb64b96e7fa2b0b0e", + "max": 10, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_0a0bc95f445948f486fbce865a4642f2", + "value": 10 + } + }, + "2eb5230a43e84790b0392db58157b0f1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2f73c87217c84bd293a5ea5b4aba0ae5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6883c5e46d3948649488d3e9f81ddb9c", + "IPY_MODEL_d0498872e00f4644847e073c6000a111", + "IPY_MODEL_482f477cc2354d9da6a8c2932bb73e98" + ], + "layout": "IPY_MODEL_1c810f5364544762a3093e1a0a9c1e5b" + } + }, + "328fa6d902bd46bbb0ecdc7404a13e8c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "33ec043a635f4e99b67cd6f7e6fc6193": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "36bbd4bd563a4053a7af8532300253b7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_33ec043a635f4e99b67cd6f7e6fc6193", + "placeholder": "​", + "style": "IPY_MODEL_39fee7a249c146d1a166e58755c1cda8", + "value": " 100/100 [00:00<00:00, 277.78 examples/s]" + } + }, + "39c0963803c74ebab07cec20e10d0184": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_46b69fb951af44f99232f459daa4f103", + "IPY_MODEL_3e23b4c5848843fcb44dc0ae2f157d66", + "IPY_MODEL_c9f86634a6bf4e49a902e3d42e67f1bd" + ], + "layout": "IPY_MODEL_03b8a027c56f4b52a3e54f57bb5bb526" + } + }, + "39fee7a249c146d1a166e58755c1cda8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "39fff32b9756437581228465165a3115": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3aeb28bc164444d7afb7bf7435a001f2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9f8d631358e240f982e31171d1bd9f26", + "placeholder": "​", + "style": "IPY_MODEL_a0c7029819414c5dacefed93194cd763", + "value": " 100/100 [00:00<00:00, 648.06 examples/s]" + } + }, + "3b07ec7f4d024b61abe94c8adeebed55": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3bb2805fcf0441089c0f4789e28b072d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_eedc1213dd604bbe827dcec617fdae34", + "placeholder": "​", + "style": "IPY_MODEL_f73f91bb567a48f890ba0827b7ed321f", + "value": "Downloading shards: 100%" + } + }, + "3e23b4c5848843fcb44dc0ae2f157d66": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b5121cada3514b67a9c533e7468b3058", + "max": 10, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_bf70daf78057419b8a78af75a093a3dd", + "value": 10 + } + }, + "425fe267a38748ea9670a0996b802bdc": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4349fab6f16343cb8955367f6fbc4a43": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0ff4d8414af94af59628b0417a40cc7d", + "placeholder": "​", + "style": "IPY_MODEL_534a5dc9cd7e475db2be613849959fc7", + "value": "model-00001-of-00002.safetensors: 100%" + } + }, + "45e867ccde7d4b5bb4ed4861d723a758": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2bcef869f1814a04bbbed73df7a9ab24", + "placeholder": "​", + "style": "IPY_MODEL_e3bd52cd621e4d2196e94327324722c4", + "value": "generation_config.json: 100%" + } + }, + "46b69fb951af44f99232f459daa4f103": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_58a18918bae34aca8ec73ae89fd5bc24", + "placeholder": "​", + "style": "IPY_MODEL_fd6e1776cbcd4f7b96ec6d9754eb2c83", + "value": "Packing eval dataset: 100%" + } + }, + "472cbf91b24f46829960d68e2316c417": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f2157c83879046a29b72613bce9de56e", + "placeholder": "​", + "style": "IPY_MODEL_3b07ec7f4d024b61abe94c8adeebed55", + "value": "Applying chat template to train dataset: 100%" + } + }, + "482f477cc2354d9da6a8c2932bb73e98": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_51b42c72bc2b428fbc0389bfd4d9e598", + "placeholder": "​", + "style": "IPY_MODEL_611a6d951d2a42b9b650496612cfd484", + "value": " 2/2 [00:25<00:00, 10.98s/it]" + } + }, + "4cfce958cf5445129ab6281784664038": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4d006dc72b2b45b58caf4d398c3756b8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_328fa6d902bd46bbb0ecdc7404a13e8c", + "max": 100, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_f375fed157034dfcbd28744027d77eba", + "value": 100 + } + }, + "4e21f1bd903443a89dea32bb3f3c26a9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4f75329d3e8d4cc38a405c1c4cc51d70": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "51b42c72bc2b428fbc0389bfd4d9e598": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "534a5dc9cd7e475db2be613849959fc7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "537e188c000041fea6adf26f2255d738": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "538f6a3c632f431fa9d16ab17383a602": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "54fc2d9962de4ffda0500a01e112b58a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8e70cccb0fb04a43b3c6ab234bcae9a8", + "IPY_MODEL_f2d87447fe8448c7baff656c540620e6", + "IPY_MODEL_5f438fbbfb60436faf79662e81092154" + ], + "layout": "IPY_MODEL_197619158cd247649eac3722284c8d19" + } + }, + "55e72b7f262b4f57a6abb1c9f01c8de2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b782092e2282488ba86f85eebe697603", + "placeholder": "​", + "style": "IPY_MODEL_f7ba9e0f4e64484a82374bb5f1d12b15", + "value": " 10/10 [00:00<00:00, 154.34 examples/s]" + } + }, + "56e8079c374a4f3f9af5ef96a73f2955": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e633387b1640461e82617c1702ee82f5", + "max": 100, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_26484831a87a4b489e1288ea71ea7767", + "value": 100 + } + }, + "57d137229091486dbf0e4b7dd6dce98a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b4c43d908bd64d9bbdb488dac46d2e45", + "placeholder": "​", + "style": "IPY_MODEL_96691a6287ef401582a2a1744a4940c4", + "value": "Tokenizing train dataset: 100%" + } + }, + "58a18918bae34aca8ec73ae89fd5bc24": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5c8fa13e559942849a61d9480be730bd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1e271fcb92a14680b84c33cb7c28f9c0", + "placeholder": "​", + "style": "IPY_MODEL_da543c28b9e44723b019220de8427b5e", + "value": " 24.2k/24.2k [00:00<00:00, 1.86MB/s]" + } + }, + "5ec98ede3fbf4c64843b935ce3ad28a7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ec8ecb8bdee4435fbc97d73863ebd9f8", + "placeholder": "​", + "style": "IPY_MODEL_1af481e6544a4fa386815218461cd5c3", + "value": " 241M/241M [00:05<00:00, 41.5MB/s]" + } + }, + "5f438fbbfb60436faf79662e81092154": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0db5d5c516d7479ebf7603093f9e1e99", + "placeholder": "​", + "style": "IPY_MODEL_654fd18a9e59415e9dd314dc2f94a654", + "value": " 838/838 [00:00<00:00, 38.3kB/s]" + } + }, + "611a6d951d2a42b9b650496612cfd484": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6296f0c3ac5647e9b9cbc7c8212a2b35": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b821e13722e24feb941fa31a604a85e9", + "max": 4988025760, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_91c21b2b127640e195f2e7c7256b5a0e", + "value": 4988025760 + } + }, + "62f3a32c4f484dd6899ba5d6ffbaca11": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "63c269b37eed4d348f9ce24eef15fc15": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_73c9d510c8754f2ea21adf318e35bc8e", + "placeholder": "​", + "style": "IPY_MODEL_0fe7751f55134695afb44bf8673dd4d9", + "value": "Applying chat template to eval dataset: 100%" + } + }, + "654fd18a9e59415e9dd314dc2f94a654": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "681019ca1d084d9692f5085d1df520ae": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6883c5e46d3948649488d3e9f81ddb9c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_681019ca1d084d9692f5085d1df520ae", + "placeholder": "​", + "style": "IPY_MODEL_b1bb9bcec30144a380fa4fe440c41d7c", + "value": "Loading checkpoint shards: 100%" + } + }, + "68baf2700f614be288bf35e54d207096": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fc9a32511862493e980682b6ff5044bb", + "placeholder": "​", + "style": "IPY_MODEL_538f6a3c632f431fa9d16ab17383a602", + "value": " 187/187 [00:00<00:00, 12.9kB/s]" + } + }, + "6e1393f9f39a4b3cb94753c883b1bbf7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fe30dac330db4fde94af1c54c84a1be8", + "placeholder": "​", + "style": "IPY_MODEL_4cfce958cf5445129ab6281784664038", + "value": " 2/2 [02:06<00:00, 53.19s/it]" + } + }, + "6f4e106bb5b44f398a1fe4ac588f6cca": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "71ba28670e8d4583b66b1c1587cdbce1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4349fab6f16343cb8955367f6fbc4a43", + "IPY_MODEL_6296f0c3ac5647e9b9cbc7c8212a2b35", + "IPY_MODEL_c6d97ccbecb0407f89ef4469f3874e74" + ], + "layout": "IPY_MODEL_ccabb079b6fd466fb877a018aebf793c" + } + }, + "73c9d510c8754f2ea21adf318e35bc8e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "78a34eb9cd534c3d84c8f22d3c53c88f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "822bea0ac84d4ff29d984bf5f5d2c3a2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "89033e9c0dd249db9dc9a3b1e215dded": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "89eee480405a416ba0edf097423724b9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_822bea0ac84d4ff29d984bf5f5d2c3a2", + "placeholder": "​", + "style": "IPY_MODEL_ecef440c871b4daba34661a1ddba6b0c", + "value": "Packing train dataset: 100%" + } + }, + "8bbe22288edf4a06b2c56952fd81d5e7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_298f092855f14af79ec2eda792732810", + "IPY_MODEL_2e6392b95f8a48568a89780adf76387f", + "IPY_MODEL_55e72b7f262b4f57a6abb1c9f01c8de2" + ], + "layout": "IPY_MODEL_9fbca7fa0d6b4fff910b806a97fa7718" + } + }, + "8e70cccb0fb04a43b3c6ab234bcae9a8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1d104fe8612f45e4810bbed7e3540330", + "placeholder": "​", + "style": "IPY_MODEL_d62425b0d0ea497ead2cd981eaa61c7e", + "value": "config.json: 100%" + } + }, + "91163fcffc60438cb39b0eb586dac418": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_39fff32b9756437581228465165a3115", + "placeholder": "​", + "style": "IPY_MODEL_4f75329d3e8d4cc38a405c1c4cc51d70", + "value": " 10/10 [00:00<00:00, 298.91 examples/s]" + } + }, + "91c21b2b127640e195f2e7c7256b5a0e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "952893c941c346c2aedcd9358859a3b9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "95eebbfed6fc41d6a8c668abe1608756": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "96691a6287ef401582a2a1744a4940c4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9a8b33ef0f6c446496cc7dae07da321c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9ac674eeba0542e7b4e28a13e90ce652": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2eb5230a43e84790b0392db58157b0f1", + "placeholder": "​", + "style": "IPY_MODEL_26bd63db6a384c12b7d42bf95ca1d1bc", + "value": "model-00002-of-00002.safetensors: 100%" + } + }, + "9f8d631358e240f982e31171d1bd9f26": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9fbca7fa0d6b4fff910b806a97fa7718": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a0c7029819414c5dacefed93194cd763": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a385bba49b514ab386cb5f4cbb01821f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a76145e51f7544fdabd23198baf318c4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a89230859593424e960047a96977c6b8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f7dd34e15348462297564f0e6e0b568d", + "max": 10, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_537e188c000041fea6adf26f2255d738", + "value": 10 + } + }, + "a893802af41d4400b35b9cb71add1387": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_45e867ccde7d4b5bb4ed4861d723a758", + "IPY_MODEL_f5e196c908e7491982773d3231fff3e6", + "IPY_MODEL_68baf2700f614be288bf35e54d207096" + ], + "layout": "IPY_MODEL_001b32600fdd418bb30c6b5ff85e269c" + } + }, + "a8edc3a5b0d9422b8e2e63d5564cfdc9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b1542891fc6243d98d51981dd0584bdf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d36e7dd4b9dc497faa6e8f63843a738f", + "placeholder": "​", + "style": "IPY_MODEL_f469ec8c79ac476c82a5e228f347bffa", + "value": " 100/100 [00:00<00:00, 690.13 examples/s]" + } + }, + "b1bb9bcec30144a380fa4fe440c41d7c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b2e16ad7540d4760b28f3a8c419905f8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b4c43d908bd64d9bbdb488dac46d2e45": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b5121cada3514b67a9c533e7468b3058": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b782092e2282488ba86f85eebe697603": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b821e13722e24feb941fa31a604a85e9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bc6e638133f545ff8d54f767de0cb35a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a8edc3a5b0d9422b8e2e63d5564cfdc9", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_e08c970bbf4540a89533a43f719f68e4", + "value": 2 + } + }, + "bd746ea2e46a491e954ac6f32fb0e45b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e6f810bd430245b190ee932554cca05c", + "max": 100, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_952893c941c346c2aedcd9358859a3b9", + "value": 100 + } + }, + "bdbd9e7e1d674edeab47e3595f6af4f8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bf70daf78057419b8a78af75a093a3dd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c6d97ccbecb0407f89ef4469f3874e74": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1296a8a4baea4faabc62a42b2ca1a53a", + "placeholder": "​", + "style": "IPY_MODEL_13b49790234c4d1aa8fe9b532fcf95bf", + "value": " 4.99G/4.99G [01:59<00:00, 42.4MB/s]" + } + }, + "c9f86634a6bf4e49a902e3d42e67f1bd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e0b3b3c072be44de8e0a2dae91598aa6", + "placeholder": "​", + "style": "IPY_MODEL_4e21f1bd903443a89dea32bb3f3c26a9", + "value": " 10/10 [00:00<00:00, 312.22 examples/s]" + } + }, + "cacc3c3a10c64b338866a8e42201e44c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cc4993f1af6b4f2685ecbced238b8913": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6f4e106bb5b44f398a1fe4ac588f6cca", + "max": 240691728, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_0c881b9322624d70bb2c5147a5422633", + "value": 240691728 + } + }, + "ccabb079b6fd466fb877a018aebf793c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ce3c69ec86224ffea8c46deb20831bb7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3bb2805fcf0441089c0f4789e28b072d", + "IPY_MODEL_bc6e638133f545ff8d54f767de0cb35a", + "IPY_MODEL_6e1393f9f39a4b3cb94753c883b1bbf7" + ], + "layout": "IPY_MODEL_a76145e51f7544fdabd23198baf318c4" + } + }, + "cee71fbbf8a04b3bb64b96e7fa2b0b0e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d0498872e00f4644847e073c6000a111": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_425fe267a38748ea9670a0996b802bdc", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_95eebbfed6fc41d6a8c668abe1608756", + "value": 2 + } + }, + "d1d376228c334c5999143b905e234ffc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d36e7dd4b9dc497faa6e8f63843a738f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d62425b0d0ea497ead2cd981eaa61c7e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "da543c28b9e44723b019220de8427b5e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "deba87fc28db4f78b58fc1e456fea335": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f06414fa35b64ff588511796c9b51d1f", + "IPY_MODEL_21cf377576154ffeb028f4ae3b3503d5", + "IPY_MODEL_5c8fa13e559942849a61d9480be730bd" + ], + "layout": "IPY_MODEL_fae24e4a14814c7ebef30b422c2d3652" + } + }, + "e08c970bbf4540a89533a43f719f68e4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e0b3b3c072be44de8e0a2dae91598aa6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e1ef7211c5554b2f8fdd39f2f846d2d9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9ac674eeba0542e7b4e28a13e90ce652", + "IPY_MODEL_cc4993f1af6b4f2685ecbced238b8913", + "IPY_MODEL_5ec98ede3fbf4c64843b935ce3ad28a7" + ], + "layout": "IPY_MODEL_bdbd9e7e1d674edeab47e3595f6af4f8" + } + }, + "e3bd52cd621e4d2196e94327324722c4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e3fe61834c3e49a3895212a336776f9d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_472cbf91b24f46829960d68e2316c417", + "IPY_MODEL_bd746ea2e46a491e954ac6f32fb0e45b", + "IPY_MODEL_b1542891fc6243d98d51981dd0584bdf" + ], + "layout": "IPY_MODEL_b2e16ad7540d4760b28f3a8c419905f8" + } + }, + "e633387b1640461e82617c1702ee82f5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e6f810bd430245b190ee932554cca05c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e9de72aadc5743a2b56537b3ad035461": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_57d137229091486dbf0e4b7dd6dce98a", + "IPY_MODEL_4d006dc72b2b45b58caf4d398c3756b8", + "IPY_MODEL_36bbd4bd563a4053a7af8532300253b7" + ], + "layout": "IPY_MODEL_cacc3c3a10c64b338866a8e42201e44c" + } + }, + "ec8ecb8bdee4435fbc97d73863ebd9f8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ecef440c871b4daba34661a1ddba6b0c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "eedc1213dd604bbe827dcec617fdae34": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f06414fa35b64ff588511796c9b51d1f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1981ff353e494735be4706a76053c24a", + "placeholder": "​", + "style": "IPY_MODEL_9a8b33ef0f6c446496cc7dae07da321c", + "value": "model.safetensors.index.json: 100%" + } + }, + "f2157c83879046a29b72613bce9de56e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f2d87447fe8448c7baff656c540620e6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2828b2455ec44143a5739c8e8207fb9b", + "max": 838, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_03b839beea6a4f6b8d9005491146615d", + "value": 838 + } + }, + "f375fed157034dfcbd28744027d77eba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f469ec8c79ac476c82a5e228f347bffa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f4a01e54ec53475585eaa88b3a272b4b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_63c269b37eed4d348f9ce24eef15fc15", + "IPY_MODEL_a89230859593424e960047a96977c6b8", + "IPY_MODEL_91163fcffc60438cb39b0eb586dac418" + ], + "layout": "IPY_MODEL_89033e9c0dd249db9dc9a3b1e215dded" + } + }, + "f5e196c908e7491982773d3231fff3e6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1e9d8fccba9a468291ffe271b3497830", + "max": 187, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_d1d376228c334c5999143b905e234ffc", + "value": 187 + } + }, + "f73f91bb567a48f890ba0827b7ed321f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f7ba9e0f4e64484a82374bb5f1d12b15": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f7dd34e15348462297564f0e6e0b568d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fae24e4a14814c7ebef30b422c2d3652": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fc9a32511862493e980682b6ff5044bb": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fd6e1776cbcd4f7b96ec6d9754eb2c83": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "fe30dac330db4fde94af1c54c84a1be8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + } + } + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}