---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- generated_from_trainer
- dataset_size:3
- loss:MultipleNegativesRankingLoss
base_model: aimanfadillah/standardized
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---
# SentenceTransformer based on aimanfadillah/standardized
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [aimanfadillah/standardized](https://huggingface.co/aimanfadillah/standardized). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [aimanfadillah/standardized](https://huggingface.co/aimanfadillah/standardized)
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'BertModel'})
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'The weather is lovely today.',
"It's so sunny outside!",
'He drove to the stadium.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.6651, 0.1016],
# [0.6651, 1.0000, 0.1394],
# [0.1016, 0.1394, 1.0000]])
```
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 3 training samples
* Columns: sentence_0
, sentence_1
, and label
* Approximate statistics based on the first 3 samples:
| | sentence_0 | sentence_1 | label |
|:--------|:-------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|:--------------------------------------------------------------|
| type | string | string | float |
| details |
Cooling Type
| Cooling System
| 0.8
|
| Lock function
| Control Lock
| 0.8
|
| Interior lamp
| Interior Lighting
| 0.8
|
* Loss: [MultipleNegativesRankingLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim",
"gather_across_devices": false
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 3
- `per_device_eval_batch_size`: 3
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters