Text Generation
Transformers
Safetensors
English
llama
conversational
text-generation-inference
File size: 6,975 Bytes
f61860c
768371f
 
 
c27ccb6
768371f
 
66442b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
768371f
c27ccb6
f61860c
 
a3ba5f8
f61860c
799730b
 
eb5c3ef
 
768371f
f61860c
768371f
f61860c
768371f
1f2cef3
58d4a76
 
529e50e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58d4a76
 
 
 
 
588bfaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58d4a76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
529e50e
 
 
 
 
 
 
 
 
 
 
 
58d4a76
 
768371f
1f2cef3
768371f
1f2cef3
768371f
1f2cef3
768371f
1f2cef3
768371f
1f2cef3
768371f
1f2cef3
768371f
3a263de
1f2cef3
768371f
1f2cef3
768371f
f61860c
527cb42
 
768371f
527cb42
768371f
 
 
 
527cb42
768371f
527cb42
768371f
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
---
library_name: transformers
license: apache-2.0
datasets:
- TokenBender/code_instructions_122k_alpaca_style
metrics:
- accuracy
language:
- en
widget:
  - text: |
      ### Instruction: write a neural network complete code in Keras 
      ### Input: Use cifar dataset 
      ### Response:
  
    output:
      text: >-
        from keras.datasets import cifar10
        import numpy as np
        from keras.models import Sequential
        from keras.layers import Dense, Dropout, Activation, Flatten
        from keras.layers import Conv2D, MaxPooling2D
        from keras.utils import to_categorical
        from keras.optimizers import Adam
        
        # Load the CIFAR-10 dataset
        (X_train, y_train), (X_test, y_test) = cifar10.load_data()
        
        # Normalize pixel values to be between 0 and 1
        X_train = X_train.astype('float32') / 255
        X_test = X_test.astype('float32') / 255
        
        # Convert class vectors to binary class matrices
        y_train = to_categorical(y_train, num_classes=10)
        y_test = to_categorical(y_test, num_classes=10)
        
        # Create the model
        model = Sequential()
        model.add(Conv2D(32, (3, 3), input_shape=(32, 32, 3)))
        model.add(Activation('relu'))
        model.add(MaxPooling2D(pool_size=(2, 2)))
        
        model.add(Conv2D(64, (3, 3)))
        model.add(Activation('relu'))
        model.add(MaxPooling2D(pool_size=(2, 2)))
        
        model.add(Flatten())
        model.add(Dense(64))
        model.add(Activation('relu'))
        model.add(Dropout(0.5))
        model.add(Dense(10))
        model.add(Activation('softmax'))
        
        # Compile the model
        model.compile(loss='categorical_crossentropy', optimizer=Adam(), metrics=['accuracy'])
        
        # Train the model
        model.fit(X_train, y_train, batch_size=32, epochs=10, validation_split=0.2)
  
pipeline_tag: text-generation
base_model: codellama/CodeLlama-13b-Instruct-hf
---

<p align="center" style="font-size:34px;"><b>Panda-Coder 🐼</b></p>

# Panda Coder-13B vLLM Inference: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1yP-11PWqLrDn5ymKDWMfz9r6jLpTcTAH?usp=sharing)

![1*E4V6iZPaeE6iTZjAleCt3Q.webp](https://cdn-uploads.huggingface.co/production/uploads/630f3058236215d0b7078806/q4k9YbKDW3eypKmOJio5j.webp)

 Panda Coder is a state-of-the-art LLM capable of generating code on the NLP based Instructions

 ## Model description

 πŸ€– Model Description: Panda-Coder is a state-of-the-art LLM, a fine-tuned model, specifically designed to generate code based on natural language instructions. It's the result of relentless innovation and meticulous fine-tuning, all to make coding easier and more accessible for everyone.

## Inference 

> Hardware requirements:
>
> 30GB VRAM - A100 Preferred

### vLLM - For Faster Inference

#### Installation

```
!pip install vllm
```

**Implementation**:

```python
from vllm import LLM, SamplingParams

llm = LLM(model='aiplanet/panda-coder-13B',gpu_memory_utilization=0.95,max_model_len=4096)

prompts = [""" ### Instruction: Write a Java code to add 15 numbers randomly generated.
### Input: [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]
### Response:
""",
"### Instruction: write a neural network complete code in Keras ### Input: Use cifar dataset ### Response:"
]

sampling_params = SamplingParams(temperature=0.1, top_p=0.95,repetition_penalty = 1.1,max_tokens=1000)

outputs = llm.generate(prompts, sampling_params)

for output in outputs:
    prompt = output.prompt
    generated_text = output.outputs[0].text
    print(generated_text)
    print("\n\n")
```


### Transformers - Basic Implementation

```python
import torch
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments,BitsAndBytesConfig

bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16
)

model = "aiplanet/panda-coder-13B"

base_model = AutoModelForCausalLM.from_pretrained(model, quantization_config=bnb_config, device_map="cuda")

tokenizer = AutoTokenizer.from_pretrained(model, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right"

prompt = f"""### Instruction:
Below is an instruction that describes a task. Write a response that appropriately completes the request.

Write a Python quickstart script to get started with TensorFlow

### Input:

### Response:
"""

input_ids = tokenizer(prompt, return_tensors="pt", truncation=True).input_ids.cuda()
outputs = base_model.generate(input_ids=input_ids, max_new_tokens=512, do_sample=True, top_p=0.9,temperature=0.1,repetition_penalty=1.1)

print(f"Output:\n{tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0][len(prompt):]}")
```

Output

```bash
Output:
import tensorflow as tf

# Create a constant tensor
hello_constant = tf.constant('Hello, World!')

# Print the value of the constant
print(hello_constant)
```

## Prompt Template for Panda Coder 13B

```
### Instruction:
{<add your instruction here>}

### Input:
{<can be empty>}

### Response:
```

 ## πŸ”— Key Features:

 🌟 NLP-Based Coding: With Panda-Coder, you can transform your plain text instructions into functional code effortlessly. No need to grapple with syntax and semantics - it understands your language.

 🎯 Precision and Efficiency: The model is tailored for accuracy, ensuring your code is not just functional but also efficient.

 ✨ Unleash Creativity: Whether you're a novice or an expert coder, Panda-Coder is here to support your coding journey, offering creative solutions to your programming challenges.

 πŸ“š Evol Instruct Code: It's built on the robust Evol Instruct Code 80k-v1 dataset, guaranteeing top-notch code generation.

 πŸ“’ What's Next?: We believe in continuous improvement and are excited to announce that in our next release, Panda-Coder will be enhanced with a custom dataset. This dataset will not only expand the language support but also include hardware programming languages like MATLAB, Embedded C, and Verilog. πŸ§°πŸ’‘

 ## Get in Touch


 You can schedule 1:1 meeting with our DevRel & Community Team to get started with AI Planet Open Source LLMs and GenAI Stack. Schedule the call here: [https://calendly.com/jaintarun](https://calendly.com/jaintarun)

 Stay tuned for more updates and be a part of the coding evolution. Join us on this exciting journey as we make AI accessible to all at AI Planet!



 ### Framework versions

- Transformers 4.33.3
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3

 ### Citation

 ```
 @misc {lucifertrj,
	author       = { {Tarun Jain} },
	title        = { Panda Coder-13B by AI Planet},
	year         = 2023,
	url          = { https://huggingface.co/aiplanet/panda-coder-13B },
	publisher    = { Hugging Face }
}
 ```