--- library_name: peft license: other base_model: Qwen/Qwen3-30B-A3B tags: - llama-factory - lora - generated_from_trainer model-index: - name: Qwen3-30B-A3B-alpaca-th-52k-dolly-th-15k-wangchan-instruct results: [] --- # Qwen3-30B-A3B-alpaca-th-52k-dolly-th-15k-wangchan-instruct This model is a fine-tuned version of [Qwen/Qwen3-30B-A3B](https://huggingface.co/Qwen/Qwen3-30B-A3B) on the alpaca-th-52k, the dolly-th-15k and the wangchan-instruct datasets. It achieves the following results on the evaluation set: - Loss: 0.6631 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 64 - gradient_accumulation_steps: 8 - total_train_batch_size: 1024 - total_eval_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.9351 | 0.1149 | 10 | 0.9997 | | 0.8087 | 0.2299 | 20 | 0.8204 | | 0.7724 | 0.3448 | 30 | 0.7787 | | 0.7386 | 0.4598 | 40 | 0.7544 | | 0.7351 | 0.5747 | 50 | 0.7382 | | 0.7431 | 0.6897 | 60 | 0.7254 | | 0.7183 | 0.8046 | 70 | 0.7151 | | 0.711 | 0.9195 | 80 | 0.7065 | | 0.6909 | 1.0345 | 90 | 0.6995 | | 0.6893 | 1.1494 | 100 | 0.6939 | | 0.6796 | 1.2644 | 110 | 0.6874 | | 0.65 | 1.3793 | 120 | 0.6812 | | 0.6615 | 1.4943 | 130 | 0.6775 | | 0.6555 | 1.6092 | 140 | 0.6739 | | 0.6522 | 1.7241 | 150 | 0.6713 | | 0.6545 | 1.8391 | 160 | 0.6687 | | 0.648 | 1.9540 | 170 | 0.6668 | | 0.6285 | 2.0690 | 180 | 0.6663 | | 0.6652 | 2.1839 | 190 | 0.6655 | | 0.6307 | 2.2989 | 200 | 0.6647 | | 0.6383 | 2.4138 | 210 | 0.6641 | | 0.6394 | 2.5287 | 220 | 0.6636 | | 0.632 | 2.6437 | 230 | 0.6632 | | 0.6416 | 2.7586 | 240 | 0.6631 | | 0.6228 | 2.8736 | 250 | 0.6631 | | 0.6316 | 2.9885 | 260 | 0.6630 | ### Framework versions - PEFT 0.15.2 - Transformers 4.52.3 - Pytorch 2.7.0+cu126 - Datasets 3.6.0 - Tokenizers 0.21.1