SentenceTransformer based on intfloat/multilingual-e5-base

This is a sentence-transformers model finetuned from intfloat/multilingual-e5-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: intfloat/multilingual-e5-base
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity

Fine-tuned Models

This model is part of a progressive series of sentence embedding models based on intfloat/multilingual-e5-base, fine-tuned specifically for Dhivehi language understanding.

Each stage leverages a targeted dataset to specialize the model for semantic similarity, question answering, and summarization tasks — improving performance for real-world Dhivehi NLP applications.

Stage Task Model Dataset Objective
0 Base Multilingual Base intfloat/multilingual-e5-base
1 Paraphrase Identification (MNR) alakxender/e5-dhivehi-paws-mnr alakxender/dhivehi-paws-labeled > label=1 Only MultipleNegativesRankingLoss
2 Paraphrase Identification (Cosine) alakxender/e5-dhivehi-paws-cos alakxender/dhivehi-paws-labeled CosineSimilarityLoss
3 Question → Passage Matching alakxender/e5-dhivehi-qa-mnr alakxender/dhivehi-qa-dataset MultipleNegativesRankingLoss
4 News Title → Content alakxender/e5-dhivehi-articles-mnr alakxender/dhivehi-news-corpus MultipleNegativesRankingLoss
5 Summary → Content alakxender/e5-dhivehi-summaries-mnr alakxender/dv-en-parallel-corpus-clean, alakxender/dv-summary-translation-corpus MultipleNegativesRankingLoss

Each model builds upon the previous checkpoint, incrementally enhancing the semantic capabilities of the model for Dhivehi. The goal is to support high-quality sentence embeddings for a wide range of Dhivehi information retrieval and understanding tasks.

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'XLMRobertaModel'})
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("alakxender/e5-dhivehi-paws-mnr")
# Run inference
sentences = [
    'query: މި މާނަ ތިރީގައިވާ ގޮތަށް އެއްވެސް ( ސްޓޭންޑަރޑް ނުވަތަ ނޮން ސްޓޭންޑަރޑް ) ނުކުތާއަކަށް ފުޅާކުރެވިދާނެއެވެ :',
    'query: އެ މާނަ އަމިއްލައަށް ފުޅާކުރެވޭ ( ސްޓޭންޑަރޑް ނުވަތަ ނޮން ސްޓޭންޑަރޑް ) ޕޮއިންޓްތަކަށް ތިރީގައިވާ ގޮތަށް ފުޅާކުރެވިދާނެއެވެ :',
    "query: ޑޮންގް ޒާއޯ އަކީ `` ޝިއޯލިއަން '' އެއް ކަމަށާއި އޭނާގެ ފުރަތަމަ އަހަރުތަކުގައި ހަނގުރާމަވެރިޔާ ޔުއާން ޝާއޯގެ ދަށުން ޑިސްޓްރިކްޓް އޮފިޝަލްގެ މަގާމު އަދާކުރެއްވުމުގެ ކުރިން އޭނާ ވަނީ އަސްކަރީ ލަފާދޭ މީހަކަށް ޕްރޮމޯޓްވެފަ އެވެ .",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000,  0.9850, -0.0063],
#         [ 0.9850,  1.0000, -0.0151],
#         [-0.0063, -0.0151,  1.0000]])

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.2502
spearman_cosine 0.283

Training Details

Training Dataset

  • Size: 25,436 training samples
  • Columns: sentence_0 and sentence_1
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1
    type string string
    details
    • min: 9 tokens
    • mean: 42.4 tokens
    • max: 83 tokens
    • min: 9 tokens
    • mean: 42.52 tokens
    • max: 81 tokens
  • Samples:
    sentence_0 sentence_1
    query: ކެނެޑާގައި އުފައްދާ ހުރިހާ ދުންފަތުގެ %90 ވަރަކަށް މިތަނުގައި އުފައްދައެވެ . query: ކެނެޑާގައި އުފައްދާ ހުރިހާ ދުންފަތުގެ %90 ވަރަކަށް މިތަނުން އުފައްދައެވެ .
    query: ޒަމާނީ ހެދުން ބޭނުން ކުރަން ނިންމުމަކީ ހައުސްމަން ކިޔާ ނިންމުމަކީ އޯސަން ޑްރާމާއަކީ ސާފު ޒަމާނީ ޕެރެލަލްސްތަކެއް ހުރި ސިޔާސީ މެލޯޑްރާމާއެއްގެ ގޮތުގައި ތަސައްވަރު ކުރެއްވި މުހިންމު އެއް މާއްދާއެކެވެ . query: ހައުސްމަން ވިދާޅުވީ ޒަމާނީ ހެދުން ބޭނުން ކުރަން ނިންމުމަކީ `` ސާފު ޒަމާނީ ޕެރެލަލްސްތަކެއް ހުރި ސިޔާސީ މެލޯޑްރާމާއެއްގެ ގޮތުގައި އޮރސަން ޑްރާމާ ތަސައްވުރު ކުރުމުގައި މުހިންމު އެއް މާއްދާއެއް ކަމަށެވެ . '' .
    query: ލެޓާ އަކީ ނާޒީ ޖަރުމަނުން ލެޓްވިއާ ހިފެހެއްޓި ދުވަސްވަރު ޖަރުމަނުގެ ނޫސް އެޖެންސީ ޑީއެންބީގެ ދަށުގައި އޮތް ތަނެކެވެ . query: ނާޒީ ޖަރުމަނުން ލެޓްވިއާ ހިފުމުގެ ތެރޭގައި ލެޓާ އޮތީ ޖަރުމަނުގެ ޑީއެންބީ ނިއުސް އެޖެންސީގެ ދަށުގައެވެ .
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 3
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss dhivehi-paws_spearman_cosine
0.6289 500 0.5595 0.2212
1.0 795 - 0.2677
1.2579 1000 0.2365 0.2781
1.8868 1500 0.1846 0.2733
2.0 1590 - 0.2797
2.5157 2000 0.1547 0.2772
3.0 2385 - 0.2830

Framework Versions

  • Python: 3.9.21
  • Sentence Transformers: 5.0.0
  • Transformers: 4.52.4
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.3.0
  • Datasets: 3.2.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
1
Safetensors
Model size
0.3B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for alakxender/e5-dhivehi-paws-mnr

Finetuned
(101)
this model
Finetunes
1 model

Dataset used to train alakxender/e5-dhivehi-paws-mnr

Evaluation results