--- base_model: - NousResearch/Hermes-2-Pro-Mistral-7B - mistralai/Mistral-7B-Instruct-v0.2 tags: - merge - mergekit - lazymergekit - NousResearch/Hermes-2-Pro-Mistral-7B - mistralai/Mistral-7B-Instruct-v0.2 --- # TranscriptAnalyzer-7B TranscriptAnalyzer-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [NousResearch/Hermes-2-Pro-Mistral-7B](https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B) * [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) ## 🧩 Configuration ```yaml base_model: mistralai/Mistral-7B-v0.1 dtype: float16 merge_method: dare_ties parameters: density: 0.6 # Optimal pour 2 modèles slices: - sources: - model: NousResearch/Hermes-2-Pro-Mistral-7B layer_range: [0, 32] parameters: weight: 0.65 # 65% Hermes (analyse) density: 0.7 - model: mistralai/Mistral-7B-Instruct-v0.2 layer_range: [0, 32] parameters: weight: 0.35 # 35% Mistral (rapidité) density: 0.6 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "alantcoding/TranscriptAnalyzer-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```