File size: 1,956 Bytes
8efeb06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: apache-2.0
base_model: Qwen/Qwen3-0.6B-Base
tags:
- merge
- sft
- dpo
- qwen3
- math
- code
- mcqa
- mnlp-m3
datasets:
- albertfares/MNLP_M3_dpo_dataset
language:
- en
pipeline_tag: text-generation
---

# MNLP M3 Merged Model (SFT + DPO)

This model combines the best of both worlds:
- **SFT Component**: `mgatti/MNLP_M3_mcqa_model` - Multiple-choice QA capabilities
- **DPO Component**: `albertfares/MNLP_M3_dpo_model` - Preference-aligned responses

## Model Details

- **Base Model**: Qwen/Qwen3-0.6B-Base
- **SFT Model**: Multiple-choice QA fine-tuned model
- **DPO Model**: Direct preference optimized model  
- **Merge Strategy**: Advanced model weight merging
- **Combined Capabilities**: MCQA + preference alignment

## Capabilities

✅ **Multiple-Choice Question Answering** (from SFT component)
✅ **Preference-Aligned Generation** (from DPO component)  
✅ **Math and Code Generation** (from MNLP M3 training)
✅ **Reasoning Tasks** (combined strengths)

## Usage

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("merged_mnlp_m3_sft_dpo")
tokenizer = AutoTokenizer.from_pretrained("merged_mnlp_m3_sft_dpo")

# For MCQA
prompt = "Which of the following is correct? A) 2+2=5 B) 2+2=4 C) 2+2=3"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=200)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

# For general generation
prompt = "Explain the concept of recursion in programming"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=300, temperature=0.7)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```

## Training Data

- **SFT**: Multiple-choice QA dataset
- **DPO**: MNLP M3 preference dataset with math, code, and reasoning

This merged model should excel at both structured QA tasks and open-ended generation with preference alignment.