amd
/

Text-to-Image
Diffusers
Safetensors
art
File size: 14,535 Bytes
9acd97f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
075a559
9acd97f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
# Modifications Copyright (c) 2025 Advanced Micro Devices, Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


from typing import Any, Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
from diffusers.configuration_utils import register_to_config
from diffusers.models.attention import JointTransformerBlock
from diffusers.models.embeddings import PatchEmbed, TimestepEmbedding, Timesteps
from diffusers.models.modeling_outputs import Transformer2DModelOutput
from diffusers.models.normalization import AdaLayerNormContinuous
from diffusers.models.transformers import SD3Transformer2DModel
from diffusers.utils import is_torch_version


def random_masking(x, mask_ratio):
    """
    Perform per-sample random masking by per-sample shuffling.
    Per-sample shuffling is done by argsort random noise.
    x: [N, L, D], sequence
    """
    N, L, D = x.shape  # batch, length, dim
    len_keep = int(L * (1 - mask_ratio))

    noise = torch.rand(N, L, device=x.device)  # noise in [0, 1]

    ids_keep = torch.argsort(noise, dim=1)[:, :len_keep]
    ids_keep, _ = torch.sort(ids_keep, dim=1)
    x_masked = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D))
    return x_masked, ids_keep, len_keep


def build_projector(hidden_size, projector_dim, z_dim):
    return nn.Sequential(
        nn.Linear(hidden_size, projector_dim),
        nn.SiLU(),
        nn.Linear(projector_dim, projector_dim),
        nn.SiLU(),
        nn.Linear(projector_dim, z_dim),
    )


# Source: https://github.com/NVlabs/Sana/blob/70459f414474c10c509e8b58f3f9442738f85577/diffusion/model/norms.py#L183
class RMSNorm(torch.nn.Module):
    def __init__(self, dim: int, scale_factor=1.0, eps: float = 1e-6):
        """
            Initialize the RMSNorm normalization layer.

        Args:
            dim (int): The dimension of the input tensor.
            eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.

        Attributes:
            eps (float): A small value added to the denominator for numerical stability.
            weight (nn.Parameter): Learnable scaling parameter.

        """
        super().__init__()
        self.eps = eps
        self.weight = torch.nn.Parameter(torch.ones(dim) * scale_factor)

    def _norm(self, x):
        """
        Apply the RMSNorm normalization to the input tensor.

        Args:
            x (torch.Tensor): The input tensor.

        Returns:
            torch.Tensor: The normalized tensor.

        """
        return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)

    def forward(self, x):
        """
        Forward pass through the RMSNorm layer.

        Args:
            x (torch.Tensor): The input tensor.

        Returns:
            torch.Tensor: The output tensor after applying RMSNorm.

        """
        return (self.weight * self._norm(x.float())).type_as(x)


class TimestepEmbeddings(nn.Module):
    def __init__(self, embedding_dim):
        super().__init__()

        self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
        self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)

    def forward(self, timestep, dtype):
        timesteps_proj = self.time_proj(timestep)
        timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=dtype))  # (N, D)

        return timesteps_emb


class NitroMMDiTModel(SD3Transformer2DModel):
    _supports_gradient_checkpointing = True

    @register_to_config
    def __init__(
        self,
        sample_size: int = 128,
        patch_size: int = 2,
        in_channels: int = 16,
        num_layers: int = 24,
        attention_head_dim: int = 64,
        num_attention_heads: int = 18,
        caption_channels: int = 4096,
        caption_projection_dim: int = 1152,
        out_channels: int = 16,
        interpolation_scale: int = 1,
        pos_embed_max_size: int = 96,
        dual_attention_layers: Tuple[
            int, ...
        ] = (),  # () for sd3.0; (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) for sd3.5
        qk_norm: Optional[str] = None,
        repa_depth=-1,
        projector_dim=2048,
        z_dims=[768],
    ):
        super().__init__(
            sample_size=sample_size,
            patch_size=patch_size,
            in_channels=in_channels,
            num_layers=num_layers,
            attention_head_dim=attention_head_dim,
            num_attention_heads=num_attention_heads,
            caption_projection_dim=caption_projection_dim,
            out_channels=out_channels,
            pos_embed_max_size=pos_embed_max_size,
            dual_attention_layers=dual_attention_layers,
            qk_norm=qk_norm,
        )

        self.patch_mixer_depth = None  # initially no masking applied
        self.mask_ratio = 0

        default_out_channels = in_channels
        self.out_channels = out_channels if out_channels is not None else default_out_channels
        self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim

        if repa_depth != -1:
            self.projectors = nn.ModuleList([build_projector(self.inner_dim, projector_dim, z_dim) for z_dim in z_dims])
            assert repa_depth >= 0 and repa_depth < num_layers
            self.repa_depth = repa_depth

        self.pos_embed = PatchEmbed(
            height=self.config.sample_size,
            width=self.config.sample_size,
            patch_size=self.config.patch_size,
            in_channels=self.config.in_channels,
            embed_dim=self.inner_dim,
            interpolation_scale=self.config.interpolation_scale,
        )
        self.time_text_embed = TimestepEmbeddings(embedding_dim=self.inner_dim)
        self.context_embedder = nn.Linear(self.config.caption_channels, self.config.caption_projection_dim)
        self.text_embedding_norm = RMSNorm(self.inner_dim, scale_factor=0.01, eps=1e-5)

        # `attention_head_dim` is doubled to account for the mixing.
        # It needs to crafted when we get the actual checkpoints.
        self.transformer_blocks = nn.ModuleList(
            [
                JointTransformerBlock(
                    dim=self.inner_dim,
                    num_attention_heads=self.config.num_attention_heads,
                    attention_head_dim=self.config.attention_head_dim,
                    context_pre_only=i == num_layers - 1,
                    qk_norm=qk_norm,
                    use_dual_attention=True if i in dual_attention_layers else False,
                )
                for i in range(self.config.num_layers)
            ]
        )

        self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
        self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)

        self.gradient_checkpointing = False

    def _set_gradient_checkpointing(self, module, value=False):
        if hasattr(module, "gradient_checkpointing"):
            module.gradient_checkpointing = value

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: torch.FloatTensor = None,
        timestep: torch.LongTensor = None,
        block_controlnet_hidden_states: List = None,
        joint_attention_kwargs: Optional[Dict[str, Any]] = None,
        return_dict: bool = True,
        **kwargs,
    ) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
        """
        Args:
            hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
                Input `hidden_states`.
            encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
                Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
            timestep (`torch.LongTensor`):
                Used to indicate denoising step.
            block_controlnet_hidden_states (`list` of `torch.Tensor`):
                A list of tensors that if specified are added to the residuals of transformer blocks.
            joint_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
                tuple.

        Returns:
            If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
            `tuple` where the first element is the sample tensor.
        """

        height, width = hidden_states.shape[-2:]

        hidden_states = self.pos_embed(hidden_states)  # takes care of adding positional embeddings too.
        temb = self.time_text_embed(timestep, dtype=encoder_hidden_states.dtype)
        encoder_hidden_states = self.context_embedder(encoder_hidden_states)
        encoder_hidden_states = self.text_embedding_norm(encoder_hidden_states)

        ids_keep = None
        len_keep = hidden_states.shape[1]
        zs = None
        for index_block, block in enumerate(self.transformer_blocks):

            if torch.is_grad_enabled() and self.gradient_checkpointing and block.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states,
                    encoder_hidden_states,
                    temb,
                    joint_attention_kwargs,
                    **ckpt_kwargs,
                )
            else:
                encoder_hidden_states, hidden_states = block(
                    hidden_states=hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    temb=temb,
                    joint_attention_kwargs=joint_attention_kwargs,
                )

            # controlnet residual
            if block_controlnet_hidden_states is not None and block.context_pre_only is False:
                interval_control = len(self.transformer_blocks) / len(block_controlnet_hidden_states)
                hidden_states = hidden_states + block_controlnet_hidden_states[int(index_block / interval_control)]

            # patch masking
            if self.training and (self.patch_mixer_depth != -1) and (self.patch_mixer_depth == index_block):
                hidden_states, ids_keep, len_keep = random_masking(hidden_states, self.mask_ratio)

            # REPA
            if self.training and (self.repa_depth != -1) and (self.repa_depth == index_block):
                N, T, D = hidden_states.shape
                zs = [projector(hidden_states.reshape(-1, D)).reshape(N, len_keep, -1) for projector in self.projectors]

        hidden_states = self.norm_out(hidden_states, temb)
        hidden_states = self.proj_out(hidden_states)


        # if inference, return the unpatchified output as usual
        # if training, return the patch sequence 
        if not self.training:
            patch_size = self.config.patch_size
            height = height // patch_size
            width = width // patch_size

            hidden_states = hidden_states.reshape(
                shape=(
                    hidden_states.shape[0],
                    height,
                    width,
                    patch_size,
                    patch_size,
                    self.out_channels,
                )
            )
            hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
            output = hidden_states.reshape(
                shape=(
                    hidden_states.shape[0],
                    self.out_channels,
                    height * patch_size,
                    width * patch_size,
                )
            )

            if not return_dict:
                return (output,)

            return Transformer2DModelOutput(sample=output)

        else:
            return hidden_states, ids_keep, zs

    def enable_masking(self, depth, mask_ratio):
        # depth: apply masking after block_[depth]. should be [0, nblks-1]
        assert depth >= 0 and depth < len(self.transformer_blocks)
        self.patch_mixer_depth = depth
        assert mask_ratio >= 0 and mask_ratio <= 1
        self.mask_ratio = mask_ratio

    def disable_masking(self):
        self.patch_mixer_depth = None

    def enable_gradient_checkpointing(self, nblocks_to_apply_grad_checkpointing):
        N = len(self.transformer_blocks)

        if nblocks_to_apply_grad_checkpointing == -1:
            nblocks_to_apply_grad_checkpointing = N
        nblocks_to_apply_grad_checkpointing = min(N, nblocks_to_apply_grad_checkpointing)

        # Apply to blocks evenly spaced out
        step = N / nblocks_to_apply_grad_checkpointing if nblocks_to_apply_grad_checkpointing > 0 else 0
        indices = [int((i + 0.5) * step) for i in range(nblocks_to_apply_grad_checkpointing)]

        self.gradient_checkpointing = True
        for blk_ind, block in enumerate(self.transformer_blocks):
            block.gradient_checkpointing = blk_ind in indices
            print(f"Block {blk_ind} grad checkpointing set to {block.gradient_checkpointing}")