File size: 1,699 Bytes
aab1300
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8000553
aab1300
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8000553
 
 
aab1300
8000553
 
aab1300
 
8000553
aab1300
 
 
 
 
 
8000553
 
 
aab1300
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
library_name: peft
license: bigcode-openrail-m
base_model: bigcode/starcoder2-3b
tags:
- base_model:adapter:bigcode/starcoder2-3b
- lora
- transformers
pipeline_tag: text-generation
model-index:
- name: starcoder2-ft-plsql2node
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# starcoder2-ft-plsql2node

This model is a fine-tuned version of [bigcode/starcoder2-3b](https://huggingface.co/bigcode/starcoder2-3b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4398

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.574         | 1.0   | 60   | 0.4433          |
| 2.5626        | 2.0   | 120  | 0.4411          |
| 3.1912        | 3.0   | 180  | 0.4398          |


### Framework versions

- PEFT 0.16.0
- Transformers 4.53.2
- Pytorch 2.6.0+cu124
- Datasets 2.14.4
- Tokenizers 0.21.2