--- license: apache-2.0 datasets: - b-mc2/sql-create-context - Clinton/Text-to-sql-v1 language: - en base_model: - cssupport/t5-small-awesome-text-to-sql - google-t5/t5-small pipeline_tag: text2text-generation tags: - text2sql - sql metrics: - accuracy - character library_name: transformers --- # Industry standard text to sql generation with high accuracy. Sample code to begin with: import torch from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained('anilajax/text2sql_industry_standard') device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = T5ForConditionalGeneration.from_pretrained('anilajax/text2sql_industry_standard') model = model.to(device) model.eval() def generate_sql(input_prompt): # Tokenize the input prompt inputs = tokenizer(input_prompt, padding=True, truncation=True, return_tensors="pt").to(device) # Forward pass with torch.no_grad(): outputs = model.generate(**inputs, max_length=512) # Decode the output IDs to a string (SQL query in this case) generated_sql = tokenizer.decode(outputs[0], skip_special_tokens=True) return generated_sql input_prompt = "provide count of students where class = 10" generated_sql = generate_sql(input_prompt) print(f"The generated SQL query is: {generated_sql}") #expected output - SELECT COUNT(*) FROM students WHERE class = 10