--- library_name: transformers license: other base_model: google/medsiglip-448 tags: - generated_from_trainer datasets: - imagefolder model-index: - name: medsiglip-448-ft-crc100k results: [] --- # medsiglip-448-ft-crc100k This model is a fine-tuned version of [google/medsiglip-448](https://huggingface.co/google/medsiglip-448) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2713 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.3465 | 0.3556 | 50 | 1.3722 | | 1.3101 | 0.7111 | 100 | 1.3356 | | 1.3028 | 1.064 | 150 | 1.2855 | | 1.2389 | 1.4196 | 200 | 1.3003 | | 1.2522 | 1.7751 | 250 | 1.2713 | ### Framework versions - Transformers 4.55.4 - Pytorch 2.5.1+cu121 - Datasets 4.0.0 - Tokenizers 0.21.0