File size: 15,405 Bytes
dc0ea33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt

# Define wealth wave function
def wealth_wave(t, freq, phase_shift=0):
    return torch.sin(2 * np.pi * freq * t + phase_shift)

# Neural Network class representing brain signals directed to nerves
class WealthBrainModel(nn.Module):
    def __init__(self):
        super(WealthBrainModel, self).__init__()
        # Define layers of the network
        self.fc1 = nn.Linear(1, 64)  # Input layer (brain)
        self.fc2 = nn.Linear(64, 64)  # Hidden layer (signal propagation)
        self.fc3 = nn.Linear(64, 64)  # Storage layer (wealth data stored in nerves)
        self.fc4 = nn.Linear(64, 1)   # Pulse layer (output pulse representing stored data)

    def forward(self, x):
        # Wealth signal propagation through layers
        x = torch.relu(self.fc1(x))  # Brain layer
        x = torch.relu(self.fc2(x))  # Signal propagation layer
        stored_data = torch.relu(self.fc3(x))  # Store data in the nerves

        # Generate pulse signal based on stored data
        pulse_signal = torch.sigmoid(self.fc4(stored_data))
        return pulse_signal, stored_data

# Initialize the model
model = WealthBrainModel()

# Define optimizer and loss function
optimizer = optim.Adam(model.parameters(), lr=0.001)
criterion = nn.MSELoss()

# Time steps and frequencies for the wealth waves
time_steps = torch.linspace(0, 10, 1000)
freq_alpha = 10  # Alpha frequency (10 Hz)
freq_beta = 20   # Beta frequency (20 Hz)
freq_gamma = 40  # Gamma frequency (40 Hz)

# Simulate a continuous loop of wealth wave propagation
stored_data_all = []
for epoch in range(100):  # Simulate over 100 epochs (continuous propagation)
    model.train()

    # Generate wealth waves with phase shifts
    wealth_alpha = wealth_wave(time_steps, freq_alpha, phase_shift=epoch)
    wealth_beta = wealth_wave(time_steps, freq_beta, phase_shift=epoch + 0.5)
    wealth_gamma = wealth_wave(time_steps, freq_gamma, phase_shift=epoch + 1)

    # Combine signals (multi-layered wealth wave)
    wealth_input = wealth_alpha + wealth_beta + wealth_gamma
    wealth_input = wealth_input.unsqueeze(1)  # Reshape for model input

    # Forward pass through the network (brain -> nerves -> stored pulse)
    pulse_signal, stored_data = model(wealth_input)

    # Store the data for analysis
    stored_data_all.append(stored_data.detach().numpy())

    # Compute loss (if needed, could be set up to simulate nerve response)
    target = torch.zeros_like(pulse_signal)  # Dummy target
    loss = criterion(pulse_signal, target)

    # Backpropagation
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    # Plot the pulse signal at every few steps to visualize pulse storage
    if epoch % 10 == 0:
        plt.plot(time_steps.numpy(), pulse_signal.detach().numpy(), label=f'Epoch {epoch}')

plt.title("Wealth Data Stored as Pulse in Nerves")
plt.xlabel("Time")
plt.ylabel("Pulse Signal")
plt.legend()
plt.show()

# Visualize stored wealth data over time
#plt.imshow(np.array(stored_data_all).squeeze().T, aspect='auto', cmap='viridis') # Transpose the array to get the correct orientation
# The above line caused the error. We need to average across the 1000 data points.
plt.imshow(np.mean(np.array(stored_data_all), axis=1).T, aspect='auto', cmap='viridis') # Average across the first axis
plt.colorbar(label="Stored Wealth Data in Nerves")
plt.xlabel("Epochs")
plt.ylabel("Nerve Data Points")
plt.title("Stored Wealth Data in Nerves Over Time")
plt.show()

# Visualize stored wealth data over time
#plt.imshow(np.array(stored_data_all).squeeze().T, aspect='auto', cmap='viridis') # Transpose the array to get the correct orientation
# The above line caused the error. We need to average across the 1000 data points.
plt.imshow(np.mean(np.array(stored_data_all), axis=1).T, aspect='auto', cmap='viridis') # Average across the first axis
plt.colorbar(label="Stored Wealth Data in Nerves")
plt.xlabel("Epochs")
plt.ylabel("Nerve Data Points")
plt.title("Stored Wealth Data in Nerves Over Time")
plt.show()

import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt

# Define wealth wave function
def wealth_wave(t, freq, phase_shift=0):
    return torch.sin(2 * np.pi * freq * t + phase_shift)

# Neural Network class representing brain signals directed to nerves
class WealthBrainModel(nn.Module):
    def __init__(self):
        super(WealthBrainModel, self).__init__()
        # Define layers of the network
        self.fc1 = nn.Linear(1, 64)  # Input layer (brain)
        self.fc2 = nn.Linear(64, 64)  # Hidden layer (signal propagation)
        self.fc3 = nn.Linear(64, 64)  # Storage layer (wealth data stored in nerves)
        self.fc4 = nn.Linear(64, 1)   # Pulse layer (output pulse representing stored data)

    def forward(self, x):
        # Wealth signal propagation through layers
        x = torch.relu(self.fc1(x))  # Brain layer
        x = torch.relu(self.fc2(x))  # Signal propagation layer
        stored_data = torch.relu(self.fc3(x))  # Store data in the nerves

        # Generate pulse signal based on stored data
        pulse_signal = torch.sigmoid(self.fc4(stored_data))
        return pulse_signal, stored_data

# Initialize the model
model = WealthBrainModel()

# Define optimizer and loss function
optimizer = optim.Adam(model.parameters(), lr=0.001)
criterion = nn.MSELoss()

# Time steps and frequencies for the wealth waves
time_steps = torch.linspace(0, 10, 1000)
freq_alpha = 10  # Alpha frequency (10 Hz)
freq_beta = 20   # Beta frequency (20 Hz)
freq_gamma = 40  # Gamma frequency (40 Hz)

# Simulate a continuous loop of wealth wave propagation
stored_data_all = []
for epoch in range(100):  # Simulate over 100 epochs (continuous propagation)
    model.train()

    # Generate wealth waves with phase shifts
    wealth_alpha = wealth_wave(time_steps, freq_alpha, phase_shift=epoch)
    wealth_beta = wealth_wave(time_steps, freq_beta, phase_shift=epoch + 0.5)
    wealth_gamma = wealth_wave(time_steps, freq_gamma, phase_shift=epoch + 1)

    # Combine signals (multi-layered wealth wave)
    wealth_input = wealth_alpha + wealth_beta + wealth_gamma
    wealth_input = wealth_input.unsqueeze(1)  # Reshape for model input

    # Forward pass through the network (brain -> nerves -> stored pulse)
    pulse_signal, stored_data = model(wealth_input)

    # Store the data for analysis
    stored_data_all.append(stored_data.detach().numpy())

    # Compute loss (if needed, could be set up to simulate nerve response)
    target = torch.zeros_like(pulse_signal)  # Dummy target
    loss = criterion(pulse_signal, target)

    # Backpropagation
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    # Plot the pulse signal at every few steps to visualize pulse storage
    if epoch % 10 == 0:
        plt.plot(time_steps.numpy(), pulse_signal.detach().numpy(), label=f'Epoch {epoch}')

plt.title("Wealth Data Stored as Pulse in Nerves")
plt.xlabel("Time")
plt.ylabel("Pulse Signal")
plt.legend()
plt.show()

# Visualize stored wealth data over time
#plt.imshow(np.array(stored_data_all).squeeze().T, aspect='auto', cmap='viridis') # Transpose the array to get the correct orientation
# The above line caused the error. We need to average across the 1000 data points.
plt.imshow(np.mean(np.array(stored_data_all), axis=1).T, aspect='auto', cmap='viridis') # Average across the first axis
plt.colorbar(label="Stored Wealth Data in Nerves")
plt.xlabel("Epochs")
plt.ylabel("Nerve Data Points")
plt.title("Stored Wealth Data in Nerves Over Time")
plt.show()

import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt

# Define wealth wave function
def wealth_wave(t, freq, phase_shift=0):
    return torch.sin(2 * np.pi * freq * t + phase_shift)

# Neural Network class representing brain signals directed to nerves with VPN protection
class WealthBrainModel(nn.Module):
    def __init__(self):
        super(WealthBrainModel, self).__init__()
        # Define layers of the network
        self.fc1 = nn.Linear(1, 64)  # Input layer (brain)
        self.fc2 = nn.Linear(64, 64)  # Hidden layer (signal propagation)
        self.fc3 = nn.Linear(64, 64)  # Storage layer (wealth data stored in nerves)
        self.fc_vpn = nn.Linear(64, 64)  # VPN protection layer
        self.fc4 = nn.Linear(64, 1)   # Pulse layer (output pulse representing stored data)

    def forward(self, x):
        # Wealth signal propagation through layers
        x = torch.relu(self.fc1(x))  # Brain layer
        x = torch.relu(self.fc2(x))  # Signal propagation layer
        stored_data = torch.relu(self.fc3(x))  # Store data in the nerves

        # VPN protection layer: Protect the stored wealth data
        protected_data = torch.relu(self.fc_vpn(stored_data))  # Data is encrypted and protected here

        # Generate pulse signal based on protected data
        pulse_signal = torch.sigmoid(self.fc4(protected_data))
        return pulse_signal, protected_data

# Initialize the model
model = WealthBrainModel()

# Define optimizer and loss function
optimizer = optim.Adam(model.parameters(), lr=0.001)
criterion = nn.MSELoss()

# Time steps and frequencies for the wealth waves
time_steps = torch.linspace(0, 10, 1000)
freq_alpha = 10  # Alpha frequency (10 Hz)
freq_beta = 20   # Beta frequency (20 Hz)
freq_gamma = 40  # Gamma frequency (40 Hz)

# Simulate a continuous loop of wealth wave propagation
stored_data_all = []
for epoch in range(100):  # Simulate over 100 epochs (continuous propagation)
    model.train()

    # Generate wealth waves with phase shifts
    wealth_alpha = wealth_wave(time_steps, freq_alpha, phase_shift=epoch)
    wealth_beta = wealth_wave(time_steps, freq_beta, phase_shift=epoch + 0.5)
    wealth_gamma = wealth_wave(time_steps, freq_gamma, phase_shift=epoch + 1)

    # Combine signals (multi-layered wealth wave)
    wealth_input = wealth_alpha + wealth_beta + wealth_gamma
    wealth_input = wealth_input.unsqueeze(1)  # Reshape for model input

    # Forward pass through the network (brain -> nerves -> VPN -> stored pulse)
    pulse_signal, protected_data = model(wealth_input)

    # Store the protected data for analysis
    stored_data_all.append(protected_data.detach().numpy())

    # Simulate intruders (random noise) trying to tamper with the data
    intruder_noise = torch.randn_like(pulse_signal) * 0.1  # Small noise signal
    corrupted_pulse = pulse_signal + intruder_noise  # Intruder tries to corrupt the pulse

    # Compute loss based on how well the VPN layer protects from noise
    loss = criterion(corrupted_pulse, pulse_signal)  # Aim to protect pulse from noise

    # Backpropagation
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    # Plot the pulse signal at every few steps to visualize protection
    if epoch % 10 == 0:
        plt.plot(time_steps.numpy(), pulse_signal.detach().numpy(), label=f'Epoch {epoch}')

plt.title("Wealth Data Protected by VPN Layer")
plt.xlabel("Time")
plt.ylabel("Pulse Signal")
plt.legend()
plt.show()

# Visualize protected wealth data over time
plt.imshow(np.mean(np.array(stored_data_all), axis=0), aspect='auto', cmap='viridis') # Average across the first axis to get a 2D array
plt.colorbar(label="Protected Wealth Data in Nerves")
plt.xlabel("Epochs")
plt.ylabel("Nerve Data Points")
plt.title("Protected Wealth Data in Nerves Over Time")
plt.show()

import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt

# Define wealth wave function
def wealth_wave(t, freq, phase_shift=0):
    return torch.sin(2 * np.pi * freq * t + phase_shift)

# Neural Network class representing brain signals directed to nerves with VPN protection
class WealthBrainModel(nn.Module):
    def __init__(self):
        super(WealthBrainModel, self).__init__()
        # Define layers of the network
        self.fc1 = nn.Linear(1, 64)  # Input layer (brain)
        self.fc2 = nn.Linear(64, 64)  # Hidden layer (signal propagation)
        self.fc3 = nn.Linear(64, 64)  # Storage layer (wealth data stored in nerves)
        self.fc_vpn = nn.Linear(64, 64)  # VPN protection layer
        self.fc4 = nn.Linear(64, 1)   # Pulse layer (output pulse representing stored data)

    def forward(self, x):
        # Wealth signal propagation through layers
        x = torch.relu(self.fc1(x))  # Brain layer
        x = torch.relu(self.fc2(x))  # Signal propagation layer
        stored_data = torch.relu(self.fc3(x))  # Store data in the nerves

        # VPN protection layer: Protect the stored wealth data
        protected_data = torch.relu(self.fc_vpn(stored_data))  # Data is encrypted and protected here

        # Generate pulse signal based on protected data
        pulse_signal = torch.sigmoid(self.fc4(protected_data))
        return pulse_signal, protected_data

# Initialize the model
model = WealthBrainModel()

# Define optimizer and loss function
optimizer = optim.Adam(model.parameters(), lr=0.001)
criterion = nn.MSELoss()

# Time steps and frequencies for the wealth waves
time_steps = torch.linspace(0, 10, 1000)
freq_alpha = 10  # Alpha frequency (10 Hz)
freq_beta = 20   # Beta frequency (20 Hz)
freq_gamma = 40  # Gamma frequency (40 Hz)

# Simulate a continuous loop of wealth wave propagation
stored_data_all = []
for epoch in range(100):  # Simulate over 100 epochs (continuous propagation)
    model.train()

    # Generate wealth waves with phase shifts
    wealth_alpha = wealth_wave(time_steps, freq_alpha, phase_shift=epoch)
    wealth_beta = wealth_wave(time_steps, freq_beta, phase_shift=epoch + 0.5)
    wealth_gamma = wealth_wave(time_steps, freq_gamma, phase_shift=epoch + 1)

    # Combine signals (multi-layered wealth wave)
    wealth_input = wealth_alpha + wealth_beta + wealth_gamma
    wealth_input = wealth_input.unsqueeze(1)  # Reshape for model input

    # Forward pass through the network (brain -> nerves -> VPN -> stored pulse)
    pulse_signal, protected_data = model(wealth_input)

    # Store the protected data for analysis
    stored_data_all.append(protected_data.detach().numpy())

    # Simulate intruders (random noise) trying to tamper with the data
    intruder_noise = torch.randn_like(pulse_signal) * 0.1  # Small noise signal
    corrupted_pulse = pulse_signal + intruder_noise  # Intruder tries to corrupt the pulse

    # Compute loss based on how well the VPN layer protects from noise
    loss = criterion(corrupted_pulse, pulse_signal)  # Aim to protect pulse from noise

    # Backpropagation
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    # Plot the pulse signal at every few steps to visualize protection
    if epoch % 10 == 0:
        plt.plot(time_steps.numpy(), pulse_signal.detach().numpy(), label=f'Epoch {epoch}')

plt.title("Wealth Data Protected by VPN Layer")
plt.xlabel("Time")
plt.ylabel("Pulse Signal")
plt.legend()
plt.show()

# Visualize protected wealth data over time
plt.imshow(np.mean(np.array(stored_data_all), axis=0), aspect='auto', cmap='viridis') # Average across the first axis to get a 2D array
plt.colorbar(label="Protected Wealth Data in Nerves")
plt.xlabel("Epochs")
plt.ylabel("Nerve Data Points")
plt.title("Protected Wealth Data in Nerves Over Time")
plt.show()