File size: 15,405 Bytes
dc0ea33 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 |
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
# Define wealth wave function
def wealth_wave(t, freq, phase_shift=0):
return torch.sin(2 * np.pi * freq * t + phase_shift)
# Neural Network class representing brain signals directed to nerves
class WealthBrainModel(nn.Module):
def __init__(self):
super(WealthBrainModel, self).__init__()
# Define layers of the network
self.fc1 = nn.Linear(1, 64) # Input layer (brain)
self.fc2 = nn.Linear(64, 64) # Hidden layer (signal propagation)
self.fc3 = nn.Linear(64, 64) # Storage layer (wealth data stored in nerves)
self.fc4 = nn.Linear(64, 1) # Pulse layer (output pulse representing stored data)
def forward(self, x):
# Wealth signal propagation through layers
x = torch.relu(self.fc1(x)) # Brain layer
x = torch.relu(self.fc2(x)) # Signal propagation layer
stored_data = torch.relu(self.fc3(x)) # Store data in the nerves
# Generate pulse signal based on stored data
pulse_signal = torch.sigmoid(self.fc4(stored_data))
return pulse_signal, stored_data
# Initialize the model
model = WealthBrainModel()
# Define optimizer and loss function
optimizer = optim.Adam(model.parameters(), lr=0.001)
criterion = nn.MSELoss()
# Time steps and frequencies for the wealth waves
time_steps = torch.linspace(0, 10, 1000)
freq_alpha = 10 # Alpha frequency (10 Hz)
freq_beta = 20 # Beta frequency (20 Hz)
freq_gamma = 40 # Gamma frequency (40 Hz)
# Simulate a continuous loop of wealth wave propagation
stored_data_all = []
for epoch in range(100): # Simulate over 100 epochs (continuous propagation)
model.train()
# Generate wealth waves with phase shifts
wealth_alpha = wealth_wave(time_steps, freq_alpha, phase_shift=epoch)
wealth_beta = wealth_wave(time_steps, freq_beta, phase_shift=epoch + 0.5)
wealth_gamma = wealth_wave(time_steps, freq_gamma, phase_shift=epoch + 1)
# Combine signals (multi-layered wealth wave)
wealth_input = wealth_alpha + wealth_beta + wealth_gamma
wealth_input = wealth_input.unsqueeze(1) # Reshape for model input
# Forward pass through the network (brain -> nerves -> stored pulse)
pulse_signal, stored_data = model(wealth_input)
# Store the data for analysis
stored_data_all.append(stored_data.detach().numpy())
# Compute loss (if needed, could be set up to simulate nerve response)
target = torch.zeros_like(pulse_signal) # Dummy target
loss = criterion(pulse_signal, target)
# Backpropagation
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Plot the pulse signal at every few steps to visualize pulse storage
if epoch % 10 == 0:
plt.plot(time_steps.numpy(), pulse_signal.detach().numpy(), label=f'Epoch {epoch}')
plt.title("Wealth Data Stored as Pulse in Nerves")
plt.xlabel("Time")
plt.ylabel("Pulse Signal")
plt.legend()
plt.show()
# Visualize stored wealth data over time
#plt.imshow(np.array(stored_data_all).squeeze().T, aspect='auto', cmap='viridis') # Transpose the array to get the correct orientation
# The above line caused the error. We need to average across the 1000 data points.
plt.imshow(np.mean(np.array(stored_data_all), axis=1).T, aspect='auto', cmap='viridis') # Average across the first axis
plt.colorbar(label="Stored Wealth Data in Nerves")
plt.xlabel("Epochs")
plt.ylabel("Nerve Data Points")
plt.title("Stored Wealth Data in Nerves Over Time")
plt.show()
# Visualize stored wealth data over time
#plt.imshow(np.array(stored_data_all).squeeze().T, aspect='auto', cmap='viridis') # Transpose the array to get the correct orientation
# The above line caused the error. We need to average across the 1000 data points.
plt.imshow(np.mean(np.array(stored_data_all), axis=1).T, aspect='auto', cmap='viridis') # Average across the first axis
plt.colorbar(label="Stored Wealth Data in Nerves")
plt.xlabel("Epochs")
plt.ylabel("Nerve Data Points")
plt.title("Stored Wealth Data in Nerves Over Time")
plt.show()
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
# Define wealth wave function
def wealth_wave(t, freq, phase_shift=0):
return torch.sin(2 * np.pi * freq * t + phase_shift)
# Neural Network class representing brain signals directed to nerves
class WealthBrainModel(nn.Module):
def __init__(self):
super(WealthBrainModel, self).__init__()
# Define layers of the network
self.fc1 = nn.Linear(1, 64) # Input layer (brain)
self.fc2 = nn.Linear(64, 64) # Hidden layer (signal propagation)
self.fc3 = nn.Linear(64, 64) # Storage layer (wealth data stored in nerves)
self.fc4 = nn.Linear(64, 1) # Pulse layer (output pulse representing stored data)
def forward(self, x):
# Wealth signal propagation through layers
x = torch.relu(self.fc1(x)) # Brain layer
x = torch.relu(self.fc2(x)) # Signal propagation layer
stored_data = torch.relu(self.fc3(x)) # Store data in the nerves
# Generate pulse signal based on stored data
pulse_signal = torch.sigmoid(self.fc4(stored_data))
return pulse_signal, stored_data
# Initialize the model
model = WealthBrainModel()
# Define optimizer and loss function
optimizer = optim.Adam(model.parameters(), lr=0.001)
criterion = nn.MSELoss()
# Time steps and frequencies for the wealth waves
time_steps = torch.linspace(0, 10, 1000)
freq_alpha = 10 # Alpha frequency (10 Hz)
freq_beta = 20 # Beta frequency (20 Hz)
freq_gamma = 40 # Gamma frequency (40 Hz)
# Simulate a continuous loop of wealth wave propagation
stored_data_all = []
for epoch in range(100): # Simulate over 100 epochs (continuous propagation)
model.train()
# Generate wealth waves with phase shifts
wealth_alpha = wealth_wave(time_steps, freq_alpha, phase_shift=epoch)
wealth_beta = wealth_wave(time_steps, freq_beta, phase_shift=epoch + 0.5)
wealth_gamma = wealth_wave(time_steps, freq_gamma, phase_shift=epoch + 1)
# Combine signals (multi-layered wealth wave)
wealth_input = wealth_alpha + wealth_beta + wealth_gamma
wealth_input = wealth_input.unsqueeze(1) # Reshape for model input
# Forward pass through the network (brain -> nerves -> stored pulse)
pulse_signal, stored_data = model(wealth_input)
# Store the data for analysis
stored_data_all.append(stored_data.detach().numpy())
# Compute loss (if needed, could be set up to simulate nerve response)
target = torch.zeros_like(pulse_signal) # Dummy target
loss = criterion(pulse_signal, target)
# Backpropagation
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Plot the pulse signal at every few steps to visualize pulse storage
if epoch % 10 == 0:
plt.plot(time_steps.numpy(), pulse_signal.detach().numpy(), label=f'Epoch {epoch}')
plt.title("Wealth Data Stored as Pulse in Nerves")
plt.xlabel("Time")
plt.ylabel("Pulse Signal")
plt.legend()
plt.show()
# Visualize stored wealth data over time
#plt.imshow(np.array(stored_data_all).squeeze().T, aspect='auto', cmap='viridis') # Transpose the array to get the correct orientation
# The above line caused the error. We need to average across the 1000 data points.
plt.imshow(np.mean(np.array(stored_data_all), axis=1).T, aspect='auto', cmap='viridis') # Average across the first axis
plt.colorbar(label="Stored Wealth Data in Nerves")
plt.xlabel("Epochs")
plt.ylabel("Nerve Data Points")
plt.title("Stored Wealth Data in Nerves Over Time")
plt.show()
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
# Define wealth wave function
def wealth_wave(t, freq, phase_shift=0):
return torch.sin(2 * np.pi * freq * t + phase_shift)
# Neural Network class representing brain signals directed to nerves with VPN protection
class WealthBrainModel(nn.Module):
def __init__(self):
super(WealthBrainModel, self).__init__()
# Define layers of the network
self.fc1 = nn.Linear(1, 64) # Input layer (brain)
self.fc2 = nn.Linear(64, 64) # Hidden layer (signal propagation)
self.fc3 = nn.Linear(64, 64) # Storage layer (wealth data stored in nerves)
self.fc_vpn = nn.Linear(64, 64) # VPN protection layer
self.fc4 = nn.Linear(64, 1) # Pulse layer (output pulse representing stored data)
def forward(self, x):
# Wealth signal propagation through layers
x = torch.relu(self.fc1(x)) # Brain layer
x = torch.relu(self.fc2(x)) # Signal propagation layer
stored_data = torch.relu(self.fc3(x)) # Store data in the nerves
# VPN protection layer: Protect the stored wealth data
protected_data = torch.relu(self.fc_vpn(stored_data)) # Data is encrypted and protected here
# Generate pulse signal based on protected data
pulse_signal = torch.sigmoid(self.fc4(protected_data))
return pulse_signal, protected_data
# Initialize the model
model = WealthBrainModel()
# Define optimizer and loss function
optimizer = optim.Adam(model.parameters(), lr=0.001)
criterion = nn.MSELoss()
# Time steps and frequencies for the wealth waves
time_steps = torch.linspace(0, 10, 1000)
freq_alpha = 10 # Alpha frequency (10 Hz)
freq_beta = 20 # Beta frequency (20 Hz)
freq_gamma = 40 # Gamma frequency (40 Hz)
# Simulate a continuous loop of wealth wave propagation
stored_data_all = []
for epoch in range(100): # Simulate over 100 epochs (continuous propagation)
model.train()
# Generate wealth waves with phase shifts
wealth_alpha = wealth_wave(time_steps, freq_alpha, phase_shift=epoch)
wealth_beta = wealth_wave(time_steps, freq_beta, phase_shift=epoch + 0.5)
wealth_gamma = wealth_wave(time_steps, freq_gamma, phase_shift=epoch + 1)
# Combine signals (multi-layered wealth wave)
wealth_input = wealth_alpha + wealth_beta + wealth_gamma
wealth_input = wealth_input.unsqueeze(1) # Reshape for model input
# Forward pass through the network (brain -> nerves -> VPN -> stored pulse)
pulse_signal, protected_data = model(wealth_input)
# Store the protected data for analysis
stored_data_all.append(protected_data.detach().numpy())
# Simulate intruders (random noise) trying to tamper with the data
intruder_noise = torch.randn_like(pulse_signal) * 0.1 # Small noise signal
corrupted_pulse = pulse_signal + intruder_noise # Intruder tries to corrupt the pulse
# Compute loss based on how well the VPN layer protects from noise
loss = criterion(corrupted_pulse, pulse_signal) # Aim to protect pulse from noise
# Backpropagation
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Plot the pulse signal at every few steps to visualize protection
if epoch % 10 == 0:
plt.plot(time_steps.numpy(), pulse_signal.detach().numpy(), label=f'Epoch {epoch}')
plt.title("Wealth Data Protected by VPN Layer")
plt.xlabel("Time")
plt.ylabel("Pulse Signal")
plt.legend()
plt.show()
# Visualize protected wealth data over time
plt.imshow(np.mean(np.array(stored_data_all), axis=0), aspect='auto', cmap='viridis') # Average across the first axis to get a 2D array
plt.colorbar(label="Protected Wealth Data in Nerves")
plt.xlabel("Epochs")
plt.ylabel("Nerve Data Points")
plt.title("Protected Wealth Data in Nerves Over Time")
plt.show()
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
# Define wealth wave function
def wealth_wave(t, freq, phase_shift=0):
return torch.sin(2 * np.pi * freq * t + phase_shift)
# Neural Network class representing brain signals directed to nerves with VPN protection
class WealthBrainModel(nn.Module):
def __init__(self):
super(WealthBrainModel, self).__init__()
# Define layers of the network
self.fc1 = nn.Linear(1, 64) # Input layer (brain)
self.fc2 = nn.Linear(64, 64) # Hidden layer (signal propagation)
self.fc3 = nn.Linear(64, 64) # Storage layer (wealth data stored in nerves)
self.fc_vpn = nn.Linear(64, 64) # VPN protection layer
self.fc4 = nn.Linear(64, 1) # Pulse layer (output pulse representing stored data)
def forward(self, x):
# Wealth signal propagation through layers
x = torch.relu(self.fc1(x)) # Brain layer
x = torch.relu(self.fc2(x)) # Signal propagation layer
stored_data = torch.relu(self.fc3(x)) # Store data in the nerves
# VPN protection layer: Protect the stored wealth data
protected_data = torch.relu(self.fc_vpn(stored_data)) # Data is encrypted and protected here
# Generate pulse signal based on protected data
pulse_signal = torch.sigmoid(self.fc4(protected_data))
return pulse_signal, protected_data
# Initialize the model
model = WealthBrainModel()
# Define optimizer and loss function
optimizer = optim.Adam(model.parameters(), lr=0.001)
criterion = nn.MSELoss()
# Time steps and frequencies for the wealth waves
time_steps = torch.linspace(0, 10, 1000)
freq_alpha = 10 # Alpha frequency (10 Hz)
freq_beta = 20 # Beta frequency (20 Hz)
freq_gamma = 40 # Gamma frequency (40 Hz)
# Simulate a continuous loop of wealth wave propagation
stored_data_all = []
for epoch in range(100): # Simulate over 100 epochs (continuous propagation)
model.train()
# Generate wealth waves with phase shifts
wealth_alpha = wealth_wave(time_steps, freq_alpha, phase_shift=epoch)
wealth_beta = wealth_wave(time_steps, freq_beta, phase_shift=epoch + 0.5)
wealth_gamma = wealth_wave(time_steps, freq_gamma, phase_shift=epoch + 1)
# Combine signals (multi-layered wealth wave)
wealth_input = wealth_alpha + wealth_beta + wealth_gamma
wealth_input = wealth_input.unsqueeze(1) # Reshape for model input
# Forward pass through the network (brain -> nerves -> VPN -> stored pulse)
pulse_signal, protected_data = model(wealth_input)
# Store the protected data for analysis
stored_data_all.append(protected_data.detach().numpy())
# Simulate intruders (random noise) trying to tamper with the data
intruder_noise = torch.randn_like(pulse_signal) * 0.1 # Small noise signal
corrupted_pulse = pulse_signal + intruder_noise # Intruder tries to corrupt the pulse
# Compute loss based on how well the VPN layer protects from noise
loss = criterion(corrupted_pulse, pulse_signal) # Aim to protect pulse from noise
# Backpropagation
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Plot the pulse signal at every few steps to visualize protection
if epoch % 10 == 0:
plt.plot(time_steps.numpy(), pulse_signal.detach().numpy(), label=f'Epoch {epoch}')
plt.title("Wealth Data Protected by VPN Layer")
plt.xlabel("Time")
plt.ylabel("Pulse Signal")
plt.legend()
plt.show()
# Visualize protected wealth data over time
plt.imshow(np.mean(np.array(stored_data_all), axis=0), aspect='auto', cmap='viridis') # Average across the first axis to get a 2D array
plt.colorbar(label="Protected Wealth Data in Nerves")
plt.xlabel("Epochs")
plt.ylabel("Nerve Data Points")
plt.title("Protected Wealth Data in Nerves Over Time")
plt.show() |