import torch import torch.nn as nn import torch.optim as optim import numpy as np import matplotlib.pyplot as plt # Define wealth wave function def wealth_wave(t, freq, phase_shift=0): return torch.sin(2 * np.pi * freq * t + phase_shift) # Neural Network class representing brain signals directed to nerves class WealthBrainModel(nn.Module): def __init__(self): super(WealthBrainModel, self).__init__() # Define layers of the network self.fc1 = nn.Linear(1, 64) # Input layer (brain) self.fc2 = nn.Linear(64, 64) # Hidden layer (signal propagation) self.fc3 = nn.Linear(64, 64) # Storage layer (wealth data stored in nerves) self.fc4 = nn.Linear(64, 1) # Pulse layer (output pulse representing stored data) def forward(self, x): # Wealth signal propagation through layers x = torch.relu(self.fc1(x)) # Brain layer x = torch.relu(self.fc2(x)) # Signal propagation layer stored_data = torch.relu(self.fc3(x)) # Store data in the nerves # Generate pulse signal based on stored data pulse_signal = torch.sigmoid(self.fc4(stored_data)) return pulse_signal, stored_data # Initialize the model model = WealthBrainModel() # Define optimizer and loss function optimizer = optim.Adam(model.parameters(), lr=0.001) criterion = nn.MSELoss() # Time steps and frequencies for the wealth waves time_steps = torch.linspace(0, 10, 1000) freq_alpha = 10 # Alpha frequency (10 Hz) freq_beta = 20 # Beta frequency (20 Hz) freq_gamma = 40 # Gamma frequency (40 Hz) # Simulate a continuous loop of wealth wave propagation stored_data_all = [] for epoch in range(100): # Simulate over 100 epochs (continuous propagation) model.train() # Generate wealth waves with phase shifts wealth_alpha = wealth_wave(time_steps, freq_alpha, phase_shift=epoch) wealth_beta = wealth_wave(time_steps, freq_beta, phase_shift=epoch + 0.5) wealth_gamma = wealth_wave(time_steps, freq_gamma, phase_shift=epoch + 1) # Combine signals (multi-layered wealth wave) wealth_input = wealth_alpha + wealth_beta + wealth_gamma wealth_input = wealth_input.unsqueeze(1) # Reshape for model input # Forward pass through the network (brain -> nerves -> stored pulse) pulse_signal, stored_data = model(wealth_input) # Store the data for analysis stored_data_all.append(stored_data.detach().numpy()) # Compute loss (if needed, could be set up to simulate nerve response) target = torch.zeros_like(pulse_signal) # Dummy target loss = criterion(pulse_signal, target) # Backpropagation optimizer.zero_grad() loss.backward() optimizer.step() # Plot the pulse signal at every few steps to visualize pulse storage if epoch % 10 == 0: plt.plot(time_steps.numpy(), pulse_signal.detach().numpy(), label=f'Epoch {epoch}') plt.title("Wealth Data Stored as Pulse in Nerves") plt.xlabel("Time") plt.ylabel("Pulse Signal") plt.legend() plt.show() # Visualize stored wealth data over time #plt.imshow(np.array(stored_data_all).squeeze().T, aspect='auto', cmap='viridis') # Transpose the array to get the correct orientation # The above line caused the error. We need to average across the 1000 data points. plt.imshow(np.mean(np.array(stored_data_all), axis=1).T, aspect='auto', cmap='viridis') # Average across the first axis plt.colorbar(label="Stored Wealth Data in Nerves") plt.xlabel("Epochs") plt.ylabel("Nerve Data Points") plt.title("Stored Wealth Data in Nerves Over Time") plt.show() # Visualize stored wealth data over time #plt.imshow(np.array(stored_data_all).squeeze().T, aspect='auto', cmap='viridis') # Transpose the array to get the correct orientation # The above line caused the error. We need to average across the 1000 data points. plt.imshow(np.mean(np.array(stored_data_all), axis=1).T, aspect='auto', cmap='viridis') # Average across the first axis plt.colorbar(label="Stored Wealth Data in Nerves") plt.xlabel("Epochs") plt.ylabel("Nerve Data Points") plt.title("Stored Wealth Data in Nerves Over Time") plt.show() import torch import torch.nn as nn import torch.optim as optim import numpy as np import matplotlib.pyplot as plt # Define wealth wave function def wealth_wave(t, freq, phase_shift=0): return torch.sin(2 * np.pi * freq * t + phase_shift) # Neural Network class representing brain signals directed to nerves class WealthBrainModel(nn.Module): def __init__(self): super(WealthBrainModel, self).__init__() # Define layers of the network self.fc1 = nn.Linear(1, 64) # Input layer (brain) self.fc2 = nn.Linear(64, 64) # Hidden layer (signal propagation) self.fc3 = nn.Linear(64, 64) # Storage layer (wealth data stored in nerves) self.fc4 = nn.Linear(64, 1) # Pulse layer (output pulse representing stored data) def forward(self, x): # Wealth signal propagation through layers x = torch.relu(self.fc1(x)) # Brain layer x = torch.relu(self.fc2(x)) # Signal propagation layer stored_data = torch.relu(self.fc3(x)) # Store data in the nerves # Generate pulse signal based on stored data pulse_signal = torch.sigmoid(self.fc4(stored_data)) return pulse_signal, stored_data # Initialize the model model = WealthBrainModel() # Define optimizer and loss function optimizer = optim.Adam(model.parameters(), lr=0.001) criterion = nn.MSELoss() # Time steps and frequencies for the wealth waves time_steps = torch.linspace(0, 10, 1000) freq_alpha = 10 # Alpha frequency (10 Hz) freq_beta = 20 # Beta frequency (20 Hz) freq_gamma = 40 # Gamma frequency (40 Hz) # Simulate a continuous loop of wealth wave propagation stored_data_all = [] for epoch in range(100): # Simulate over 100 epochs (continuous propagation) model.train() # Generate wealth waves with phase shifts wealth_alpha = wealth_wave(time_steps, freq_alpha, phase_shift=epoch) wealth_beta = wealth_wave(time_steps, freq_beta, phase_shift=epoch + 0.5) wealth_gamma = wealth_wave(time_steps, freq_gamma, phase_shift=epoch + 1) # Combine signals (multi-layered wealth wave) wealth_input = wealth_alpha + wealth_beta + wealth_gamma wealth_input = wealth_input.unsqueeze(1) # Reshape for model input # Forward pass through the network (brain -> nerves -> stored pulse) pulse_signal, stored_data = model(wealth_input) # Store the data for analysis stored_data_all.append(stored_data.detach().numpy()) # Compute loss (if needed, could be set up to simulate nerve response) target = torch.zeros_like(pulse_signal) # Dummy target loss = criterion(pulse_signal, target) # Backpropagation optimizer.zero_grad() loss.backward() optimizer.step() # Plot the pulse signal at every few steps to visualize pulse storage if epoch % 10 == 0: plt.plot(time_steps.numpy(), pulse_signal.detach().numpy(), label=f'Epoch {epoch}') plt.title("Wealth Data Stored as Pulse in Nerves") plt.xlabel("Time") plt.ylabel("Pulse Signal") plt.legend() plt.show() # Visualize stored wealth data over time #plt.imshow(np.array(stored_data_all).squeeze().T, aspect='auto', cmap='viridis') # Transpose the array to get the correct orientation # The above line caused the error. We need to average across the 1000 data points. plt.imshow(np.mean(np.array(stored_data_all), axis=1).T, aspect='auto', cmap='viridis') # Average across the first axis plt.colorbar(label="Stored Wealth Data in Nerves") plt.xlabel("Epochs") plt.ylabel("Nerve Data Points") plt.title("Stored Wealth Data in Nerves Over Time") plt.show() import torch import torch.nn as nn import torch.optim as optim import numpy as np import matplotlib.pyplot as plt # Define wealth wave function def wealth_wave(t, freq, phase_shift=0): return torch.sin(2 * np.pi * freq * t + phase_shift) # Neural Network class representing brain signals directed to nerves with VPN protection class WealthBrainModel(nn.Module): def __init__(self): super(WealthBrainModel, self).__init__() # Define layers of the network self.fc1 = nn.Linear(1, 64) # Input layer (brain) self.fc2 = nn.Linear(64, 64) # Hidden layer (signal propagation) self.fc3 = nn.Linear(64, 64) # Storage layer (wealth data stored in nerves) self.fc_vpn = nn.Linear(64, 64) # VPN protection layer self.fc4 = nn.Linear(64, 1) # Pulse layer (output pulse representing stored data) def forward(self, x): # Wealth signal propagation through layers x = torch.relu(self.fc1(x)) # Brain layer x = torch.relu(self.fc2(x)) # Signal propagation layer stored_data = torch.relu(self.fc3(x)) # Store data in the nerves # VPN protection layer: Protect the stored wealth data protected_data = torch.relu(self.fc_vpn(stored_data)) # Data is encrypted and protected here # Generate pulse signal based on protected data pulse_signal = torch.sigmoid(self.fc4(protected_data)) return pulse_signal, protected_data # Initialize the model model = WealthBrainModel() # Define optimizer and loss function optimizer = optim.Adam(model.parameters(), lr=0.001) criterion = nn.MSELoss() # Time steps and frequencies for the wealth waves time_steps = torch.linspace(0, 10, 1000) freq_alpha = 10 # Alpha frequency (10 Hz) freq_beta = 20 # Beta frequency (20 Hz) freq_gamma = 40 # Gamma frequency (40 Hz) # Simulate a continuous loop of wealth wave propagation stored_data_all = [] for epoch in range(100): # Simulate over 100 epochs (continuous propagation) model.train() # Generate wealth waves with phase shifts wealth_alpha = wealth_wave(time_steps, freq_alpha, phase_shift=epoch) wealth_beta = wealth_wave(time_steps, freq_beta, phase_shift=epoch + 0.5) wealth_gamma = wealth_wave(time_steps, freq_gamma, phase_shift=epoch + 1) # Combine signals (multi-layered wealth wave) wealth_input = wealth_alpha + wealth_beta + wealth_gamma wealth_input = wealth_input.unsqueeze(1) # Reshape for model input # Forward pass through the network (brain -> nerves -> VPN -> stored pulse) pulse_signal, protected_data = model(wealth_input) # Store the protected data for analysis stored_data_all.append(protected_data.detach().numpy()) # Simulate intruders (random noise) trying to tamper with the data intruder_noise = torch.randn_like(pulse_signal) * 0.1 # Small noise signal corrupted_pulse = pulse_signal + intruder_noise # Intruder tries to corrupt the pulse # Compute loss based on how well the VPN layer protects from noise loss = criterion(corrupted_pulse, pulse_signal) # Aim to protect pulse from noise # Backpropagation optimizer.zero_grad() loss.backward() optimizer.step() # Plot the pulse signal at every few steps to visualize protection if epoch % 10 == 0: plt.plot(time_steps.numpy(), pulse_signal.detach().numpy(), label=f'Epoch {epoch}') plt.title("Wealth Data Protected by VPN Layer") plt.xlabel("Time") plt.ylabel("Pulse Signal") plt.legend() plt.show() # Visualize protected wealth data over time plt.imshow(np.mean(np.array(stored_data_all), axis=0), aspect='auto', cmap='viridis') # Average across the first axis to get a 2D array plt.colorbar(label="Protected Wealth Data in Nerves") plt.xlabel("Epochs") plt.ylabel("Nerve Data Points") plt.title("Protected Wealth Data in Nerves Over Time") plt.show() import torch import torch.nn as nn import torch.optim as optim import numpy as np import matplotlib.pyplot as plt # Define wealth wave function def wealth_wave(t, freq, phase_shift=0): return torch.sin(2 * np.pi * freq * t + phase_shift) # Neural Network class representing brain signals directed to nerves with VPN protection class WealthBrainModel(nn.Module): def __init__(self): super(WealthBrainModel, self).__init__() # Define layers of the network self.fc1 = nn.Linear(1, 64) # Input layer (brain) self.fc2 = nn.Linear(64, 64) # Hidden layer (signal propagation) self.fc3 = nn.Linear(64, 64) # Storage layer (wealth data stored in nerves) self.fc_vpn = nn.Linear(64, 64) # VPN protection layer self.fc4 = nn.Linear(64, 1) # Pulse layer (output pulse representing stored data) def forward(self, x): # Wealth signal propagation through layers x = torch.relu(self.fc1(x)) # Brain layer x = torch.relu(self.fc2(x)) # Signal propagation layer stored_data = torch.relu(self.fc3(x)) # Store data in the nerves # VPN protection layer: Protect the stored wealth data protected_data = torch.relu(self.fc_vpn(stored_data)) # Data is encrypted and protected here # Generate pulse signal based on protected data pulse_signal = torch.sigmoid(self.fc4(protected_data)) return pulse_signal, protected_data # Initialize the model model = WealthBrainModel() # Define optimizer and loss function optimizer = optim.Adam(model.parameters(), lr=0.001) criterion = nn.MSELoss() # Time steps and frequencies for the wealth waves time_steps = torch.linspace(0, 10, 1000) freq_alpha = 10 # Alpha frequency (10 Hz) freq_beta = 20 # Beta frequency (20 Hz) freq_gamma = 40 # Gamma frequency (40 Hz) # Simulate a continuous loop of wealth wave propagation stored_data_all = [] for epoch in range(100): # Simulate over 100 epochs (continuous propagation) model.train() # Generate wealth waves with phase shifts wealth_alpha = wealth_wave(time_steps, freq_alpha, phase_shift=epoch) wealth_beta = wealth_wave(time_steps, freq_beta, phase_shift=epoch + 0.5) wealth_gamma = wealth_wave(time_steps, freq_gamma, phase_shift=epoch + 1) # Combine signals (multi-layered wealth wave) wealth_input = wealth_alpha + wealth_beta + wealth_gamma wealth_input = wealth_input.unsqueeze(1) # Reshape for model input # Forward pass through the network (brain -> nerves -> VPN -> stored pulse) pulse_signal, protected_data = model(wealth_input) # Store the protected data for analysis stored_data_all.append(protected_data.detach().numpy()) # Simulate intruders (random noise) trying to tamper with the data intruder_noise = torch.randn_like(pulse_signal) * 0.1 # Small noise signal corrupted_pulse = pulse_signal + intruder_noise # Intruder tries to corrupt the pulse # Compute loss based on how well the VPN layer protects from noise loss = criterion(corrupted_pulse, pulse_signal) # Aim to protect pulse from noise # Backpropagation optimizer.zero_grad() loss.backward() optimizer.step() # Plot the pulse signal at every few steps to visualize protection if epoch % 10 == 0: plt.plot(time_steps.numpy(), pulse_signal.detach().numpy(), label=f'Epoch {epoch}') plt.title("Wealth Data Protected by VPN Layer") plt.xlabel("Time") plt.ylabel("Pulse Signal") plt.legend() plt.show() # Visualize protected wealth data over time plt.imshow(np.mean(np.array(stored_data_all), axis=0), aspect='auto', cmap='viridis') # Average across the first axis to get a 2D array plt.colorbar(label="Protected Wealth Data in Nerves") plt.xlabel("Epochs") plt.ylabel("Nerve Data Points") plt.title("Protected Wealth Data in Nerves Over Time") plt.show()