# -*- coding: utf-8 -*- """MagNet 2.0 Automatically generated by Colab. Original file is located at https://colab.research.google.com/drive/1n4ADxn-u0nAkYm6mKMzzhiH1vl97qImr """ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6551d8b7d93842d24392d8ab/3Li4O7fYCpA6nlD3_cE34.png) import torch import torch.nn as nn import torch.optim as optim import matplotlib.pyplot as plt wealth_distribution = torch.randn(32, 24, 1) target_direction = torch.randn(32, 24, 1) class WealthTransferModelWithVPN(nn.Module): def __init__(self, input_size, hidden_size, lstm_hidden_size, output_size, vpn_size): super(WealthTransferModelWithVPN, self).__init__() self.fc1 = nn.Linear(input_size, hidden_size) self.relu = nn.ReLU() self.lstm = nn.LSTM(hidden_size, lstm_hidden_size, batch_first=True) self.fc2 = nn.Linear(lstm_hidden_size, output_size) self.vpn_layer = nn.Linear(output_size, vpn_size) self.decrypt_layer = nn.Linear(vpn_size, output_size) def forward(self, x, target): x = torch.cat((x, target), dim=1) x = self.relu(self.fc1(x)) x, _ = self.lstm(x) x = self.fc2(x) encrypted_output = torch.sigmoid(self.vpn_layer(x)) decrypted_output = self.decrypt_layer(encrypted_output) return decrypted_output input_size = wealth_distribution[-1] + target_direction.shape[-1] hidden_size = 64 lstm_hidden_size = 32 output_size = wealth_distribution.shape[-1] vpn_size = 128 model = WealthTransferWithVPN(input_size, hidden_sizse, lstm_hidden_size, vpn_size) with torch.no_grad(): output_signal = model(wealth_distribution, target_direction) wealth_waveform = output_signal[0].squeeze().numpy() hours = list(range(24)) plt.figure(figsize=(10, 5)) plt.plot(hours, wealth_waveform, label='Wealth Transfer Signal over 24 hours', marker='o') plt.title('Wealth Transfer Signal in 24-Hour Intervals') plt.xlabel('Hour of the Day') plt.ylabel('Wealth Signal Intensity') plt.xticks(hours) plt.grid(True) plt.legend() plt.show()