pip install torch cryptography numpy import torch import numpy as np from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives import padding # Step 1: Generate the dense wave (sinusoidal waveform modulated by message data) def generate_dense_wave(message: str, frequency: float, sample_rate: int, duration: float): t = torch.linspace(0, duration, int(sample_rate * duration)) # Convert message to numerical values (simple encoding) message_bytes = [ord(c) for c in message] message_tensor = torch.tensor(message_bytes, dtype=torch.float32) # Create a carrier wave (sine wave) carrier_wave = torch.sin(2 * np.pi * frequency * t) # Modulate the carrier wave with the message tensor modulated_wave = carrier_wave * torch.sin(2 * np.pi * message_tensor.mean() * t) return modulated_wave # Step 2: Encrypt the message def encrypt_message(message: str, key: bytes): backend = default_backend() iv = b'\x00' * 16 # Initialization vector (in a real system, use a secure IV) cipher = Cipher(algorithms.AES(key), modes.CBC(iv), backend=backend) encryptor = cipher.encryptor() # Pad the message to be AES block-size compliant padder = padding.PKCS7(algorithms.AES.block_size).padder() padded_data = padder.update(message.encode()) + padder.finalize() encrypted_message = encryptor.update(padded_data) + encryptor.finalize() return encrypted_message # Step 3: Modulate encrypted message into the waveform def modulate_wave_with_encryption(wave: torch.Tensor, encrypted_message: bytes): # Convert encrypted message to tensor encrypted_tensor = torch.tensor([byte for byte in encrypted_message], dtype=torch.float32) # Normalize encrypted tensor and modulate it with the wave modulated_wave = wave * encrypted_tensor.mean() return modulated_wave # Step 4: Demodulate and decrypt def decrypt_message(encrypted_message: bytes, key: bytes): backend = default_backend() iv = b'\x00' * 16 # Same IV as in encryption cipher = Cipher(algorithms.AES(key), modes.CBC(iv), backend=backend) decryptor = cipher.decryptor() decrypted_padded = decryptor.update(encrypted_message) + decryptor.finalize() # Unpad the message unpadder = padding.PKCS7(algorithms.AES.block_size).unpadder() decrypted_message = unpadder.update(decrypted_padded) + unpadder.finalize() return decrypted_message.decode() # Step 5: Transform into wealth data (dummy transformation for demo) def transform_to_wealth_data(decrypted_message: str): # In a real-world application, this would involve parsing wealth-specific fields wealth_data = { "original_message": decrypted_message, "net_worth": len(decrypted_message) * 1000, # Dummy wealth computation "assets": len(decrypted_message) * 500, } return wealth_data # Example usage if __name__ == "__main__": # Initial settings message = "Transfer 1000 units" key = b'\x01' * 32 # AES-256 key frequency = 5.0 # Frequency in Hz sample_rate = 100 # Samples per second duration = 1.0 # Wave duration in seconds # Step 1: Create dense wave wave = generate_dense_wave(message, frequency, sample_rate, duration) # Step 2: Encrypt the message encrypted_message = encrypt_message(message, key) # Step 3: Modulate the wave with encrypted message modulated_wave = modulate_wave_with_encryption(wave, encrypted_message) # Step 4: Decrypt the message (for demonstration) decrypted_message = decrypt_message(encrypted_message, key) # Step 5: Transform to wealth data wealth_data = transform_to_wealth_data(decrypted_message) print("Wealth Data:", wealth_data) pip install matplotlib import torch import numpy as np import matplotlib.pyplot as plt from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives import padding # Step 1: Generate the dense wave (sinusoidal waveform modulated by message data) def generate_dense_wave(message: str, frequency: float, sample_rate: int, duration: float): t = torch.linspace(0, duration, int(sample_rate * duration)) # Convert message to numerical values (simple encoding) message_bytes = [ord(c) for c in message] message_tensor = torch.tensor(message_bytes, dtype=torch.float32) # Create a carrier wave (sine wave) carrier_wave = torch.sin(2 * np.pi * frequency * t) # Modulate the carrier wave with the message tensor modulated_wave = carrier_wave * torch.sin(2 * np.pi * message_tensor.mean() * t) return t, carrier_wave, modulated_wave # Step 2: Encrypt the message def encrypt_message(message: str, key: bytes): backend = default_backend() iv = b'\x00' * 16 # Initialization vector (in a real system, use a secure IV) cipher = Cipher(algorithms.AES(key), modes.CBC(iv), backend=backend) encryptor = cipher.encryptor() # Pad the message to be AES block-size compliant padder = padding.PKCS7(algorithms.AES.block_size).padder() padded_data = padder.update(message.encode()) + padder.finalize() encrypted_message = encryptor.update(padded_data) + encryptor.finalize() return encrypted_message # Step 3: Modulate encrypted message into the waveform def modulate_wave_with_encryption(wave: torch.Tensor, encrypted_message: bytes): # Convert encrypted message to tensor encrypted_tensor = torch.tensor([byte for byte in encrypted_message], dtype=torch.float32) # Normalize encrypted tensor and modulate it with the wave modulated_wave = wave * encrypted_tensor.mean() return modulated_wave # Step 4: Visualization using Matplotlib def visualize_modulation(t, carrier_wave, modulated_wave): plt.figure(figsize=(12, 6)) # Plot the original carrier wave plt.subplot(2, 1, 1) plt.plot(t.numpy(), carrier_wave.numpy(), label="Carrier Wave", color="blue") plt.title("Carrier Wave") plt.xlabel("Time (s)") plt.ylabel("Amplitude") plt.grid(True) # Plot the modulated wave plt.subplot(2, 1, 2) plt.plot(t.numpy(), modulated_wave.numpy(), label="Modulated Wave", color="orange") plt.title("Modulated Wave (Encrypted Message)") plt.xlabel("Time (s)") plt.ylabel("Amplitude") plt.grid(True) # Show plots plt.tight_layout() plt.show() # Example usage if __name__ == "__main__": # Initial settings message = "Transfer 1000 units" key = b'\x01' * 32 # AES-256 key frequency = 5.0 # Frequency in Hz sample_rate = 100 # Samples per second duration = 1.0 # Wave duration in seconds # Step 1: Create dense wave t, carrier_wave, modulated_wave = generate_dense_wave(message, frequency, sample_rate, duration) # Step 2: Encrypt the message encrypted_message = encrypt_message(message, key) # Step 3: Modulate the wave with encrypted message modulated_wave_with_encryption = modulate_wave_with_encryption(modulated_wave, encrypted_message) # Step 4: Visualize the modulation visualize_modulation(t, carrier_wave, modulated_wave_with_encryption) import torch import numpy as np import time import base64 import matplotlib.pyplot as plt from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives import padding # Step 1: Generate the dense wave (sinusoidal waveform modulated by message data) def generate_dense_wave(message: str, frequency: float, sample_rate: int, duration: float): t = torch.linspace(0, duration, int(sample_rate * duration)) # Convert message to numerical values (simple encoding) message_bytes = [ord(c) for c in message] message_tensor = torch.tensor(message_bytes, dtype=torch.float32) # Create a carrier wave (sine wave) carrier_wave = torch.sin(2 * np.pi * frequency * t) # Modulate the carrier wave with the message tensor modulated_wave = carrier_wave * torch.sin(2 * np.pi * message_tensor.mean() * t) return t, carrier_wave, modulated_wave # Step 2: Encrypt the message (VPN layer encryption) def encrypt_message(message: str, key: bytes): backend = default_backend() iv = b'\x00' * 16 # Initialization vector (in a real system, use a secure IV) cipher = Cipher(algorithms.AES(key), modes.CBC(iv), backend=backend) encryptor = cipher.encryptor() # Pad the message to be AES block-size compliant padder = padding.PKCS7(algorithms.AES.block_size).padder() padded_data = padder.update(message.encode()) + padder.finalize() encrypted_message = encryptor.update(padded_data) + encryptor.finalize() return encrypted_message # Step 3: Simulate VPN layer transmission with encryption def vpn_layer_transmission(data: bytes): # Simulate the "VPN" by encrypting the message print("[VPN] Transmitting data securely...") time.sleep(1) # Simulating network delay encoded_data = base64.b64encode(data) print(f"[VPN] Encrypted and transmitted data: {encoded_data.decode('utf-8')}") return encoded_data # Step 4: Simulate cloud storage transfer and deep space transmission def cloud_transfer(encoded_data: bytes): print("[Cloud] Storing data in cloud for deep space transmission...") time.sleep(2) # Simulating storage delay print(f"[Cloud] Data successfully stored: {encoded_data.decode('utf-8')}") # Step 5: Visualization using Matplotlib def visualize_modulation(t, carrier_wave, modulated_wave): plt.figure(figsize=(12, 6)) # Plot the original carrier wave plt.subplot(2, 1, 1) plt.plot(t.numpy(), carrier_wave.numpy(), label="Carrier Wave", color="blue") plt.title("Carrier Wave") plt.xlabel("Time (s)") plt.ylabel("Amplitude") plt.grid(True) # Plot the modulated wave plt.subplot(2, 1, 2) plt.plot(t.numpy(), modulated_wave.numpy(), label="Modulated Wave", color="orange") plt.title("Modulated Wave (Encrypted Message)") plt.xlabel("Time (s)") plt.ylabel("Amplitude") plt.grid(True) # Show plots plt.tight_layout() plt.show() # Example usage if __name__ == "__main__": # Initial settings message = "Transfer 1000 units" key = b'\x01' * 32 # AES-256 key frequency = 5.0 # Frequency in Hz sample_rate = 100 # Samples per second duration = 1.0 # Wave duration in seconds # Step 1: Create dense wave t, carrier_wave, modulated_wave = generate_dense_wave(message, frequency, sample_rate, duration) # Step 2: Encrypt the message encrypted_message = encrypt_message(message, key) # Step 3: VPN Layer Transmission (simulate VPN secure transmission) vpn_encrypted_message = vpn_layer_transmission(encrypted_message) # Step 4: Cloud transfer and simulated "deep space" transmission cloud_transfer(vpn_encrypted_message) # Step 5: Visualize the wave modulation visualize_modulation(t, carrier_wave, modulated_wave) import torch import numpy as np import time import base64 import matplotlib.pyplot as plt from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives import padding # Step 1: Generate the dense wave (sinusoidal waveform modulated by message data) def generate_dense_wave(message: str, frequency: float, sample_rate: int, duration: float): t = torch.linspace(0, duration, int(sample_rate * duration)) # Convert message to numerical values (simple encoding) message_bytes = [ord(c) for c in message] message_tensor = torch.tensor(message_bytes, dtype=torch.float32) # Create a carrier wave (sine wave) carrier_wave = torch.sin(2 * np.pi * frequency * t) # Modulate the carrier wave with the message tensor modulated_wave = carrier_wave * torch.sin(2 * np.pi * message_tensor.mean() * t) return t, carrier_wave, modulated_wave # Step 2: Combine the waves (carrier wave + modulated wave) def combine_waves(carrier_wave: torch.Tensor, modulated_wave: torch.Tensor): combined_wave = carrier_wave + modulated_wave # Simple addition return combined_wave # Step 3: Encrypt the message (VPN layer encryption) def encrypt_message(message: str, key: bytes): backend = default_backend() iv = b'\x00' * 16 # Initialization vector (in a real system, use a secure IV) cipher = Cipher(algorithms.AES(key), modes.CBC(iv), backend=backend) encryptor = cipher.encryptor() # Pad the message to be AES block-size compliant padder = padding.PKCS7(algorithms.AES.block_size).padder() padded_data = padder.update(message.encode()) + padder.finalize() encrypted_message = encryptor.update(padded_data) + encryptor.finalize() return encrypted_message # Step 4: Simulate VPN layer transmission with encryption def vpn_layer_transmission(data: bytes): # Simulate the "VPN" by encrypting the message print("[VPN] Transmitting data securely...") time.sleep(1) # Simulating network delay encoded_data = base64.b64encode(data) print(f"[VPN] Encrypted and transmitted data: {encoded_data.decode('utf-8')}") return encoded_data # Step 5: Simulate cloud storage transfer and deep space transmission def cloud_transfer(encoded_data: bytes): print("[Cloud] Storing data in cloud for deep space transmission...") time.sleep(2) # Simulating storage delay print(f"[Cloud] Data successfully stored: {encoded_data.decode('utf-8')}") # Step 6: Visualization using Matplotlib def visualize_modulation(t, carrier_wave, modulated_wave, combined_wave): plt.figure(figsize=(12, 8)) # Plot the original carrier wave plt.subplot(3, 1, 1) plt.plot(t.numpy(), carrier_wave.numpy(), label="Carrier Wave", color="blue") plt.title("Carrier Wave") plt.xlabel("Time (s)") plt.ylabel("Amplitude") plt.grid(True) # Plot the modulated wave plt.subplot(3, 1, 2) plt.plot(t.numpy(), modulated_wave.numpy(), label="Modulated Wave", color="orange") plt.title("Modulated Wave (Encrypted Message)") plt.xlabel("Time (s)") plt.ylabel("Amplitude") plt.grid(True) # Plot the combined wave plt.subplot(3, 1, 3) plt.plot(t.numpy(), combined_wave.numpy(), label="Combined Wave", color="green") plt.title("Combined Wave (Carrier + Modulated)") plt.xlabel("Time (s)") plt.ylabel("Amplitude") plt.grid(True) # Show plots plt.tight_layout() plt.show() # Example usage if __name__ == "__main__": # Initial settings message = "Transfer 1000 units" key = b'\x01' * 32 # AES-256 key frequency = 5.0 # Frequency in Hz sample_rate = 100 # Samples per second duration = 1.0 # Wave duration in seconds # Step 1: Create dense wave t, carrier_wave, modulated_wave = generate_dense_wave(message, frequency, sample_rate, duration) # Step 2: Combine the carrier and modulated waves combined_wave = combine_waves(carrier_wave, modulated_wave) # Step 3: Encrypt the message encrypted_message = encrypt_message(message, key) # Step 4: VPN Layer Transmission (simulate VPN secure transmission) vpn_encrypted_message = vpn_layer_transmission(encrypted_message) # Step 5: Cloud transfer and simulated "deep space" transmission cloud_transfer(vpn_encrypted_message) # Step 6: Visualize the wave modulation and combined wave visualize_modulation(t, carrier_wave, modulated_wave, combined_wave) import numpy as np # Hamming(7, 4) code for simple error detection and correction def hamming_encode(message: str): message_bits = [int(b) for b in ''.join(format(ord(c), '08b') for c in message)] encoded_bits = [] # Apply Hamming(7,4) encoding for i in range(0, len(message_bits), 4): d = message_bits[i:i+4] if len(d) < 4: # Pad if necessary d += [0] * (4 - len(d)) p1 = d[0] ^ d[1] ^ d[3] # Parity bits p2 = d[0] ^ d[2] ^ d[3] p3 = d[1] ^ d[2] ^ d[3] # Add data and parity bits encoded_bits += [p1, p2, d[0], p3, d[1], d[2], d[3]] return np.array(encoded_bits) def hamming_decode(encoded_bits): decoded_message = [] # Decode Hamming(7,4) for i in range(0, len(encoded_bits), 7): b = encoded_bits[i:i+7] if len(b) < 7: # Skip if not enough bits continue # Calculate syndrome bits p1 = b[0] ^ b[2] ^ b[4] ^ b[6] p2 = b[1] ^ b[2] ^ b[5] ^ b[6] p3 = b[3] ^ b[4] ^ b[5] ^ b[6] # Error position (if any) error_position = p1 + (p2 * 2) + (p3 * 4) if error_position != 0: b[error_position - 1] = 1 - b[error_position - 1] # Correct the bit # Extract the original data bits decoded_message += [b[2], b[4], b[5], b[6]] return ''.join([chr(int(''.join(map(str, decoded_message[i:i+8])), 2)) for i in range(0, len(decoded_message), 8)]) # Example usage message = "Test" encoded_message = hamming_encode(message) print(f"Encoded Message (Hamming): {encoded_message}") # Simulate transmission and potential bit-flips (errors) encoded_message[2] = 1 - encoded_message[2] # Introduce an error # Decode and correct errors decoded_message = hamming_decode(encoded_message) print(f"Decoded Message: {decoded_message}") import torch import numpy as np import matplotlib.pyplot as plt # Step 1: Generate the dense wave (sinusoidal waveform modulated by message data) def generate_dense_wave(message: str, frequency: float, sample_rate: int, duration: float): t = torch.linspace(0, duration, int(sample_rate * duration)) message_bytes = [ord(c) for c in message] message_tensor = torch.tensor(message_bytes, dtype=torch.float32) carrier_wave = torch.sin(2 * np.pi * frequency * t) modulated_wave = carrier_wave * torch.sin(2 * np.pi * message_tensor.mean() * t) return t, carrier_wave, modulated_wave # Step 2: Space-Time Coding (Alamouti Scheme with 2 antennas) def space_time_code(wave1: torch.Tensor, wave2: torch.Tensor): # Alamouti Space-Time Block Code for 2 antennas s1 = wave1 s2 = wave2 transmit_antenna_1 = torch.stack([s1, -s2.conj()]) transmit_antenna_2 = torch.stack([s2, s1.conj()]) return transmit_antenna_1, transmit_antenna_2 # Step 3: Doppler Compensation def doppler_compensation(wave: torch.Tensor, velocity: float, frequency: float, sample_rate: int): c = 3e8 # Speed of light in meters per second doppler_shift = frequency * (velocity / c) # Doppler shift formula compensated_wave = wave * torch.exp(-1j * 2 * np.pi * doppler_shift * torch.arange(len(wave)) / sample_rate) return compensated_wave.real # Take real part after compensation # Step 4: Combine Waves (Carrier + Modulated) def combine_waves(carrier_wave: torch.Tensor, modulated_wave: torch.Tensor): combined_wave = carrier_wave + modulated_wave return combined_wave # Step 5: Visualization using Matplotlib def visualize_modulation(t, wave1, wave2, combined_wave, title1, title2, combined_title): plt.figure(figsize=(12, 8)) # Plot Wave 1 plt.subplot(3, 1, 1) plt.plot(t.numpy(), wave1.numpy(), label=title1, color="blue") plt.title(title1) plt.xlabel("Time (s)") plt.ylabel("Amplitude") plt.grid(True) # Plot Wave 2 plt.subplot(3, 1, 2) plt.plot(t.numpy(), wave2.numpy(), label=title2, color="orange") plt.title(title2) plt.xlabel("Time (s)") plt.ylabel("Amplitude") plt.grid(True) # Plot Combined Wave plt.subplot(3, 1, 3) plt.plot(t.numpy(), combined_wave.numpy(), label=combined_title, color="green") plt.title(combined_title) plt.xlabel("Time (s)") plt.ylabel("Amplitude") plt.grid(True) plt.tight_layout() plt.show() # Example usage if __name__ == "__main__": # Initial settings message = "Deep Space Message" frequency = 5.0 # Frequency in Hz sample_rate = 100 # Samples per second duration = 1.0 # Wave duration in seconds velocity = 10000 # Relative velocity (m/s) for Doppler compensation # Step 1: Generate dense wave t, carrier_wave, modulated_wave = generate_dense_wave(message, frequency, sample_rate, duration) # Step 2: Space-Time Coding (using two antennas) st_wave1, st_wave2 = space_time_code(carrier_wave, modulated_wave) # Step 3: Doppler Compensation doppler_wave1 = doppler_compensation(st_wave1[0], velocity, frequency, sample_rate) doppler_wave2 = doppler_compensation(st_wave2[0], velocity, frequency, sample_rate) # Step 4: Combine the waves (carrier + modulated) combined_wave = combine_waves(doppler_wave1, doppler_wave2) # Step 5: Visualization visualize_modulation(t, doppler_wave1, doppler_wave2, combined_wave, "Doppler-Compensated Wave 1", "Doppler-Compensated Wave 2", "Combined Doppler-Compensated Wave")