PyTorch code (#3)
Browse files- Add LiT model (ae9d0c031c7a34b756da73f518406e716b55a4c0)
- Fix importw (1943b4b2f19a5f67ff9a4591215c8366a80dc3bb)
- Upload weights (5fd59c5def3a2f5c450bdf63f40708b34420f3a7)
- Handle dictionary in confgw (fb574928240d6acf48aaee63ef759a26a2c1ce4a)
- README.md +33 -1
- config.json +169 -0
- configuration_aimv2.py +174 -0
- merges.txt +0 -0
- model.safetensors +2 -2
- modeling_aimv2.py +442 -0
- preprocessor_config.json +28 -0
- special_tokens_map.json +24 -0
- tokenizer_config.json +29 -0
- vocab.json +0 -0
README.md
CHANGED
|
@@ -20,7 +20,39 @@ AIMv2 pre-training is simple and straightforward to train and to scale effective
|
|
| 20 |
<img src="aimv2_overview_light.png" alt="AIMv2 Overview"/>
|
| 21 |
|
| 22 |
## Usage
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
## Citation
|
| 26 |
If you find our work useful, please consider citing us as:
|
|
|
|
| 20 |
<img src="aimv2_overview_light.png" alt="AIMv2 Overview"/>
|
| 21 |
|
| 22 |
## Usage
|
| 23 |
+
|
| 24 |
+
### PyTorch
|
| 25 |
+
```python
|
| 26 |
+
import requests
|
| 27 |
+
from PIL import Image
|
| 28 |
+
from transformers import AutoProcessor, AutoModel
|
| 29 |
+
|
| 30 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
| 31 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
| 32 |
+
text = ["Picture of a dog.", "Picture of a cat.", "Picture of a horse."]
|
| 33 |
+
|
| 34 |
+
processor = AutoProcessor.from_pretrained(
|
| 35 |
+
"apple/aimv2-large-patch14-224-lit",
|
| 36 |
+
)
|
| 37 |
+
model = AutoModel.from_pretrained(
|
| 38 |
+
"apple/aimv2-large-patch14-224-lit",
|
| 39 |
+
trust_remote_code=True,
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
inputs = processor(
|
| 43 |
+
images=image,
|
| 44 |
+
text=text,
|
| 45 |
+
add_special_tokens=True,
|
| 46 |
+
truncation=True,
|
| 47 |
+
padding=True,
|
| 48 |
+
return_tensors="pt",
|
| 49 |
+
)
|
| 50 |
+
outputs = model(**inputs)
|
| 51 |
+
probs = outputs.logits_per_image.softmax(dim=-1)
|
| 52 |
+
```
|
| 53 |
+
|
| 54 |
+
### JAX
|
| 55 |
+
Under construction.
|
| 56 |
|
| 57 |
## Citation
|
| 58 |
If you find our work useful, please consider citing us as:
|
config.json
ADDED
|
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"AIMv2Model"
|
| 4 |
+
],
|
| 5 |
+
"auto_map": {
|
| 6 |
+
"AutoConfig": "configuration_aimv2.AIMv2Config",
|
| 7 |
+
"AutoModel": "modeling_aimv2.AIMv2Model"
|
| 8 |
+
},
|
| 9 |
+
"init_temperature": 0.07,
|
| 10 |
+
"max_logit_scale": 100.0,
|
| 11 |
+
"model_type": "aimv2",
|
| 12 |
+
"projection_dim": 768,
|
| 13 |
+
"text_config": {
|
| 14 |
+
"_attn_implementation_autoset": true,
|
| 15 |
+
"_name_or_path": "",
|
| 16 |
+
"add_cross_attention": false,
|
| 17 |
+
"architectures": null,
|
| 18 |
+
"attention_dropout": 0.0,
|
| 19 |
+
"bad_words_ids": null,
|
| 20 |
+
"begin_suppress_tokens": null,
|
| 21 |
+
"bos_token_id": null,
|
| 22 |
+
"chunk_size_feed_forward": 0,
|
| 23 |
+
"cross_attention_hidden_size": null,
|
| 24 |
+
"decoder_start_token_id": null,
|
| 25 |
+
"diversity_penalty": 0.0,
|
| 26 |
+
"do_sample": false,
|
| 27 |
+
"early_stopping": false,
|
| 28 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 29 |
+
"eos_token_id": 49407,
|
| 30 |
+
"exponential_decay_length_penalty": null,
|
| 31 |
+
"finetuning_task": null,
|
| 32 |
+
"forced_bos_token_id": null,
|
| 33 |
+
"forced_eos_token_id": null,
|
| 34 |
+
"hidden_size": 768,
|
| 35 |
+
"id2label": {
|
| 36 |
+
"0": "LABEL_0",
|
| 37 |
+
"1": "LABEL_1"
|
| 38 |
+
},
|
| 39 |
+
"intermediate_size": 2048,
|
| 40 |
+
"is_causal": true,
|
| 41 |
+
"is_decoder": false,
|
| 42 |
+
"is_encoder_decoder": false,
|
| 43 |
+
"label2id": {
|
| 44 |
+
"LABEL_0": 0,
|
| 45 |
+
"LABEL_1": 1
|
| 46 |
+
},
|
| 47 |
+
"length_penalty": 1.0,
|
| 48 |
+
"max_context_length": 77,
|
| 49 |
+
"max_length": 20,
|
| 50 |
+
"min_length": 0,
|
| 51 |
+
"model_type": "aimv2",
|
| 52 |
+
"no_repeat_ngram_size": 0,
|
| 53 |
+
"num_attention_heads": 6,
|
| 54 |
+
"num_beam_groups": 1,
|
| 55 |
+
"num_beams": 1,
|
| 56 |
+
"num_hidden_layers": 12,
|
| 57 |
+
"num_return_sequences": 1,
|
| 58 |
+
"output_attentions": false,
|
| 59 |
+
"output_hidden_states": false,
|
| 60 |
+
"output_scores": false,
|
| 61 |
+
"pad_token_id": null,
|
| 62 |
+
"prefix": null,
|
| 63 |
+
"problem_type": null,
|
| 64 |
+
"projection_dropout": 0.0,
|
| 65 |
+
"pruned_heads": {},
|
| 66 |
+
"qkv_bias": false,
|
| 67 |
+
"remove_invalid_values": false,
|
| 68 |
+
"repetition_penalty": 1.0,
|
| 69 |
+
"return_dict": true,
|
| 70 |
+
"return_dict_in_generate": false,
|
| 71 |
+
"rms_norm_eps": 1e-05,
|
| 72 |
+
"sep_token_id": null,
|
| 73 |
+
"suppress_tokens": null,
|
| 74 |
+
"task_specific_params": null,
|
| 75 |
+
"temperature": 1.0,
|
| 76 |
+
"tf_legacy_loss": false,
|
| 77 |
+
"tie_encoder_decoder": false,
|
| 78 |
+
"tie_word_embeddings": true,
|
| 79 |
+
"tokenizer_class": null,
|
| 80 |
+
"top_k": 50,
|
| 81 |
+
"top_p": 1.0,
|
| 82 |
+
"torch_dtype": null,
|
| 83 |
+
"torchscript": false,
|
| 84 |
+
"typical_p": 1.0,
|
| 85 |
+
"use_bfloat16": false,
|
| 86 |
+
"use_bias": false,
|
| 87 |
+
"vocab_size": 49408
|
| 88 |
+
},
|
| 89 |
+
"torch_dtype": "float32",
|
| 90 |
+
"transformers_version": "4.46.3",
|
| 91 |
+
"vision_config": {
|
| 92 |
+
"_attn_implementation_autoset": true,
|
| 93 |
+
"_name_or_path": "",
|
| 94 |
+
"add_cross_attention": false,
|
| 95 |
+
"architectures": null,
|
| 96 |
+
"attention_dropout": 0.0,
|
| 97 |
+
"bad_words_ids": null,
|
| 98 |
+
"begin_suppress_tokens": null,
|
| 99 |
+
"bos_token_id": null,
|
| 100 |
+
"chunk_size_feed_forward": 0,
|
| 101 |
+
"cross_attention_hidden_size": null,
|
| 102 |
+
"decoder_start_token_id": null,
|
| 103 |
+
"diversity_penalty": 0.0,
|
| 104 |
+
"do_sample": false,
|
| 105 |
+
"early_stopping": false,
|
| 106 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 107 |
+
"eos_token_id": null,
|
| 108 |
+
"exponential_decay_length_penalty": null,
|
| 109 |
+
"finetuning_task": null,
|
| 110 |
+
"forced_bos_token_id": null,
|
| 111 |
+
"forced_eos_token_id": null,
|
| 112 |
+
"hidden_size": 1024,
|
| 113 |
+
"id2label": {
|
| 114 |
+
"0": "LABEL_0",
|
| 115 |
+
"1": "LABEL_1"
|
| 116 |
+
},
|
| 117 |
+
"image_size": 224,
|
| 118 |
+
"intermediate_size": 2816,
|
| 119 |
+
"is_causal": false,
|
| 120 |
+
"is_decoder": false,
|
| 121 |
+
"is_encoder_decoder": false,
|
| 122 |
+
"label2id": {
|
| 123 |
+
"LABEL_0": 0,
|
| 124 |
+
"LABEL_1": 1
|
| 125 |
+
},
|
| 126 |
+
"length_penalty": 1.0,
|
| 127 |
+
"max_length": 20,
|
| 128 |
+
"min_length": 0,
|
| 129 |
+
"model_type": "aimv2",
|
| 130 |
+
"no_repeat_ngram_size": 0,
|
| 131 |
+
"num_attention_heads": 8,
|
| 132 |
+
"num_beam_groups": 1,
|
| 133 |
+
"num_beams": 1,
|
| 134 |
+
"num_channels": 3,
|
| 135 |
+
"num_hidden_layers": 24,
|
| 136 |
+
"num_queries": 1,
|
| 137 |
+
"num_return_sequences": 1,
|
| 138 |
+
"output_attentions": false,
|
| 139 |
+
"output_hidden_states": false,
|
| 140 |
+
"output_scores": false,
|
| 141 |
+
"pad_token_id": null,
|
| 142 |
+
"patch_size": 14,
|
| 143 |
+
"prefix": null,
|
| 144 |
+
"problem_type": null,
|
| 145 |
+
"projection_dropout": 0.0,
|
| 146 |
+
"pruned_heads": {},
|
| 147 |
+
"qkv_bias": false,
|
| 148 |
+
"remove_invalid_values": false,
|
| 149 |
+
"repetition_penalty": 1.0,
|
| 150 |
+
"return_dict": true,
|
| 151 |
+
"return_dict_in_generate": false,
|
| 152 |
+
"rms_norm_eps": 1e-05,
|
| 153 |
+
"sep_token_id": null,
|
| 154 |
+
"suppress_tokens": null,
|
| 155 |
+
"task_specific_params": null,
|
| 156 |
+
"temperature": 1.0,
|
| 157 |
+
"tf_legacy_loss": false,
|
| 158 |
+
"tie_encoder_decoder": false,
|
| 159 |
+
"tie_word_embeddings": true,
|
| 160 |
+
"tokenizer_class": null,
|
| 161 |
+
"top_k": 50,
|
| 162 |
+
"top_p": 1.0,
|
| 163 |
+
"torch_dtype": null,
|
| 164 |
+
"torchscript": false,
|
| 165 |
+
"typical_p": 1.0,
|
| 166 |
+
"use_bfloat16": false,
|
| 167 |
+
"use_bias": false
|
| 168 |
+
}
|
| 169 |
+
}
|
configuration_aimv2.py
ADDED
|
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Any, Dict, Optional, Union
|
| 2 |
+
|
| 3 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 4 |
+
|
| 5 |
+
__all__ = ["AIMv2VisionConfig", "AIMv2TextConfig", "AIMv2Config"]
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class AIMv2VisionConfig(PretrainedConfig):
|
| 9 |
+
"""This is the configuration class to store the configuration of an [`AIMv2VisionModel`].
|
| 10 |
+
|
| 11 |
+
Instantiating a configuration with the defaults will yield a similar configuration
|
| 12 |
+
to that of the [apple/aimv2-large-patch14-224-lit](https://huggingface.co/apple/aimv2-large-patch14-224-lit).
|
| 13 |
+
|
| 14 |
+
Args:
|
| 15 |
+
hidden_size: Dimension of the hidden representations.
|
| 16 |
+
intermediate_size: Dimension of the SwiGLU representations.
|
| 17 |
+
num_hidden_layers: Number of hidden layers in the Transformer.
|
| 18 |
+
num_attention_heads: Number of attention heads for each attention layer
|
| 19 |
+
in the Transformer.
|
| 20 |
+
num_queries: Number of learnable queries for the attention-pooling head.
|
| 21 |
+
num_channels: Number of input channels.
|
| 22 |
+
image_size: Image size.
|
| 23 |
+
patch_size: Patch size.
|
| 24 |
+
rms_norm_eps: Epsilon value used for the RMS normalization layer.
|
| 25 |
+
attention_dropout: Dropout ratio for attention probabilities.
|
| 26 |
+
projection_dropout: Dropout ratio for the projection layer after the attention.
|
| 27 |
+
qkv_bias: Whether to add a bias to the queries, keys and values.
|
| 28 |
+
use_bias: Whether to add a bias in the feed-forward and projection layers.
|
| 29 |
+
kwargs: Keyword arguments for the [`PretrainedConfig`].
|
| 30 |
+
"""
|
| 31 |
+
|
| 32 |
+
model_type: str = "aimv2"
|
| 33 |
+
base_config_key: str = "vision_config"
|
| 34 |
+
|
| 35 |
+
def __init__(
|
| 36 |
+
self,
|
| 37 |
+
hidden_size: int = 1024,
|
| 38 |
+
intermediate_size: int = 2816,
|
| 39 |
+
num_hidden_layers: int = 24,
|
| 40 |
+
num_attention_heads: int = 8,
|
| 41 |
+
num_queries: int = 1,
|
| 42 |
+
num_channels: int = 3,
|
| 43 |
+
image_size: int = 224,
|
| 44 |
+
patch_size: int = 14,
|
| 45 |
+
rms_norm_eps: float = 1e-5,
|
| 46 |
+
attention_dropout: float = 0.0,
|
| 47 |
+
projection_dropout: float = 0.0,
|
| 48 |
+
qkv_bias: bool = False,
|
| 49 |
+
use_bias: bool = False,
|
| 50 |
+
**kwargs: Any,
|
| 51 |
+
):
|
| 52 |
+
super().__init__(**kwargs)
|
| 53 |
+
self.hidden_size = hidden_size
|
| 54 |
+
self.intermediate_size = intermediate_size
|
| 55 |
+
self.num_hidden_layers = num_hidden_layers
|
| 56 |
+
self.num_attention_heads = num_attention_heads
|
| 57 |
+
self.num_queries = num_queries
|
| 58 |
+
self.num_channels = num_channels
|
| 59 |
+
self.patch_size = patch_size
|
| 60 |
+
self.image_size = image_size
|
| 61 |
+
self.attention_dropout = attention_dropout
|
| 62 |
+
self.rms_norm_eps = rms_norm_eps
|
| 63 |
+
|
| 64 |
+
self.projection_dropout = projection_dropout
|
| 65 |
+
self.qkv_bias = qkv_bias
|
| 66 |
+
self.use_bias = use_bias
|
| 67 |
+
self.is_causal = False
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
class AIMv2TextConfig(PretrainedConfig):
|
| 71 |
+
"""This is the configuration class to store the configuration of an [`AIMv2TextModel`].
|
| 72 |
+
|
| 73 |
+
Instantiating a configuration with the defaults will yield a similar configuration
|
| 74 |
+
to that of the [apple/aimv2-large-patch14-224-lit](https://huggingface.co/apple/aimv2-large-patch14-224-lit).
|
| 75 |
+
|
| 76 |
+
Args:
|
| 77 |
+
vocab_size: Size of the vocabulary.
|
| 78 |
+
hidden_size: Dimension of the hidden representations.
|
| 79 |
+
intermediate_size: Dimension of the SwiGLU representations.
|
| 80 |
+
num_hidden_layers: Number of hidden layers in the Transformer.
|
| 81 |
+
num_attention_heads: Number of attention heads for each attention layer
|
| 82 |
+
in the Transformer.
|
| 83 |
+
rms_norm_eps: Epsilon value used for the RMS normalization layer.
|
| 84 |
+
attention_dropout: Dropout ratio for attention probabilities.
|
| 85 |
+
projection_dropout: Dropout ratio for the projection layer after the attention.
|
| 86 |
+
qkv_bias: Whether to add a bias to the queries, keys and values.
|
| 87 |
+
use_bias: Whether to add a bias in the feed-forward and projection layers.
|
| 88 |
+
eos_token_id: End-of-sequence token id.
|
| 89 |
+
max_context_length: Maximum number of tokens for the context.
|
| 90 |
+
kwargs: Keyword arguments for the [`PretrainedConfig`].
|
| 91 |
+
"""
|
| 92 |
+
|
| 93 |
+
model_type: str = "aimv2"
|
| 94 |
+
base_config_key: str = "text_config"
|
| 95 |
+
|
| 96 |
+
def __init__(
|
| 97 |
+
self,
|
| 98 |
+
vocab_size: int = 49408,
|
| 99 |
+
hidden_size: int = 768,
|
| 100 |
+
intermediate_size: int = 2048,
|
| 101 |
+
num_hidden_layers: int = 12,
|
| 102 |
+
num_attention_heads: int = 6,
|
| 103 |
+
rms_norm_eps: float = 1e-5,
|
| 104 |
+
attention_dropout: float = 0.0,
|
| 105 |
+
projection_dropout: float = 0.0,
|
| 106 |
+
qkv_bias: bool = False,
|
| 107 |
+
use_bias: bool = False,
|
| 108 |
+
eos_token_id: int = 49407,
|
| 109 |
+
max_context_length: int = 77,
|
| 110 |
+
**kwargs: Any,
|
| 111 |
+
):
|
| 112 |
+
super().__init__(**kwargs)
|
| 113 |
+
self.hidden_size = hidden_size
|
| 114 |
+
self.intermediate_size = intermediate_size
|
| 115 |
+
self.num_hidden_layers = num_hidden_layers
|
| 116 |
+
self.num_attention_heads = num_attention_heads
|
| 117 |
+
self.attention_dropout = attention_dropout
|
| 118 |
+
self.rms_norm_eps = rms_norm_eps
|
| 119 |
+
|
| 120 |
+
self.projection_dropout = projection_dropout
|
| 121 |
+
self.qkv_bias = qkv_bias
|
| 122 |
+
self.use_bias = use_bias
|
| 123 |
+
self.vocab_size = vocab_size
|
| 124 |
+
self.max_context_length = max_context_length
|
| 125 |
+
self.eos_token_id = eos_token_id
|
| 126 |
+
self.is_causal = True
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
class AIMv2Config(PretrainedConfig):
|
| 130 |
+
"""This is the configuration class to store the configuration of an [`AIMv2Model`].
|
| 131 |
+
|
| 132 |
+
Instantiating a configuration with the defaults will yield a similar configuration
|
| 133 |
+
to that of the [apple/aimv2-large-patch14-224-lit](https://huggingface.co/apple/aimv2-large-patch14-224-lit).
|
| 134 |
+
|
| 135 |
+
Args:
|
| 136 |
+
vision_config: Vision config.
|
| 137 |
+
text_config: Text config.
|
| 138 |
+
projection_dim: Dimension of the image and text projection layers.
|
| 139 |
+
kwargs: Keyword arguments for the [`PretrainedConfig`].
|
| 140 |
+
"""
|
| 141 |
+
|
| 142 |
+
model_type = "aimv2"
|
| 143 |
+
is_composition: bool = True
|
| 144 |
+
sub_configs: Dict[str, PretrainedConfig] = {
|
| 145 |
+
"vision_config": AIMv2VisionConfig,
|
| 146 |
+
"text_config": AIMv2TextConfig,
|
| 147 |
+
}
|
| 148 |
+
|
| 149 |
+
def __init__(
|
| 150 |
+
self,
|
| 151 |
+
vision_config: Optional[Union[AIMv2VisionConfig, Dict[str, Any]]] = None,
|
| 152 |
+
text_config: Optional[Union[AIMv2TextConfig, Dict[str, Any]]] = None,
|
| 153 |
+
projection_dim: int = 768,
|
| 154 |
+
init_temperature: float = 0.07,
|
| 155 |
+
max_logit_scale: float = 100.0,
|
| 156 |
+
**kwargs: Any,
|
| 157 |
+
):
|
| 158 |
+
super().__init__(**kwargs)
|
| 159 |
+
if vision_config is None:
|
| 160 |
+
vision_config = AIMv2VisionConfig()
|
| 161 |
+
elif isinstance(vision_config, dict):
|
| 162 |
+
vision_config = AIMv2VisionConfig(**vision_config)
|
| 163 |
+
|
| 164 |
+
if text_config is None:
|
| 165 |
+
text_config = AIMv2TextConfig()
|
| 166 |
+
elif isinstance(text_config, dict):
|
| 167 |
+
text_config = AIMv2TextConfig(**text_config)
|
| 168 |
+
|
| 169 |
+
self.vision_config = vision_config
|
| 170 |
+
self.text_config = text_config
|
| 171 |
+
self.projection_dim = projection_dim
|
| 172 |
+
|
| 173 |
+
self.init_temperature = init_temperature
|
| 174 |
+
self.max_logit_scale = max_logit_scale
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:72c8b9fe2376ac8a5b7d15ea3175325447e819763c2372cf88596260bbcd9583
|
| 3 |
+
size 1746752340
|
modeling_aimv2.py
ADDED
|
@@ -0,0 +1,442 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Optional, Tuple, Union
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import dataclasses
|
| 5 |
+
import math
|
| 6 |
+
|
| 7 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
| 8 |
+
from transformers.utils import ModelOutput
|
| 9 |
+
|
| 10 |
+
from .configuration_aimv2 import AIMv2Config, AIMv2VisionConfig, AIMv2TextConfig
|
| 11 |
+
from torch import nn
|
| 12 |
+
from torch.nn import functional as F
|
| 13 |
+
from transformers.modeling_outputs import BaseModelOutputWithNoAttention
|
| 14 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 15 |
+
|
| 16 |
+
__all__ = ["AIMv2VisionModel", "AIMv2TextModel", "AIMv2Model"]
|
| 17 |
+
|
| 18 |
+
AIMv2VisionOrTextConfig = Union[AIMv2VisionConfig, AIMv2TextConfig]
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
@dataclasses.dataclass
|
| 22 |
+
class AIMv2Output(ModelOutput):
|
| 23 |
+
logits_per_image: torch.Tensor
|
| 24 |
+
logits_per_text: Optional[torch.Tensor] = None
|
| 25 |
+
image_features: Optional[torch.Tensor] = None
|
| 26 |
+
text_features: Optional[torch.Tensor] = None
|
| 27 |
+
vision_output: Optional[BaseModelOutputWithNoAttention] = None
|
| 28 |
+
text_output: Optional[BaseModelOutputWithNoAttention] = None
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
class AIMv2TextPreprocessor(nn.Module):
|
| 32 |
+
def __init__(self, config: AIMv2TextConfig):
|
| 33 |
+
super().__init__()
|
| 34 |
+
self.max_context_length = config.max_context_length
|
| 35 |
+
self.eos_token_id = config.eos_token_id
|
| 36 |
+
|
| 37 |
+
self.text_embedding = nn.Embedding(config.vocab_size, config.hidden_size)
|
| 38 |
+
self.positional_embedding = nn.Parameter(
|
| 39 |
+
torch.zeros(self.max_context_length, config.hidden_size)
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
def forward(self, input_ids: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 43 |
+
_, N = input_ids.shape
|
| 44 |
+
max_len = min(N, self.max_context_length)
|
| 45 |
+
eos_token_mask = input_ids == self.eos_token_id
|
| 46 |
+
tokens = self.text_embedding(input_ids)
|
| 47 |
+
tokens = tokens[:, :max_len] + self.positional_embedding[:max_len].unsqueeze(0)
|
| 48 |
+
return tokens, eos_token_mask
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
class AIMv2ExtractEOS(nn.Module):
|
| 52 |
+
def forward(
|
| 53 |
+
self, tokens: torch.Tensor, eos_token_mask: torch.Tensor
|
| 54 |
+
) -> torch.Tensor:
|
| 55 |
+
B, _, D = tokens.shape
|
| 56 |
+
eos_token_mask = torch.argmax(eos_token_mask.float(), dim=-1)
|
| 57 |
+
assert eos_token_mask.shape == (B,)
|
| 58 |
+
eos_token_mask = eos_token_mask.reshape(B, 1, 1).expand(B, 1, D)
|
| 59 |
+
eos_token = torch.gather(tokens, 1, eos_token_mask)
|
| 60 |
+
eos_token = eos_token.squeeze(1)
|
| 61 |
+
return eos_token
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
class RMSNorm(nn.Module):
|
| 65 |
+
def __init__(self, dim: int, eps: float = 1e-6):
|
| 66 |
+
super().__init__()
|
| 67 |
+
self.weight = nn.Parameter(torch.ones(dim))
|
| 68 |
+
self.eps = eps
|
| 69 |
+
|
| 70 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 71 |
+
output = self._norm(x.float()).type_as(x)
|
| 72 |
+
return output * self.weight
|
| 73 |
+
|
| 74 |
+
def extra_repr(self) -> str:
|
| 75 |
+
return f"{tuple(self.weight.shape)}, eps={self.eps}"
|
| 76 |
+
|
| 77 |
+
def _norm(self, x: torch.Tensor) -> torch.Tensor:
|
| 78 |
+
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
class AIMv2SwiGLUFFN(nn.Module):
|
| 82 |
+
def __init__(self, config: AIMv2VisionOrTextConfig):
|
| 83 |
+
super().__init__()
|
| 84 |
+
hidden_features = config.intermediate_size
|
| 85 |
+
in_features = config.hidden_size
|
| 86 |
+
bias = config.use_bias
|
| 87 |
+
|
| 88 |
+
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias)
|
| 89 |
+
self.fc2 = nn.Linear(hidden_features, in_features, bias=bias)
|
| 90 |
+
self.fc3 = nn.Linear(in_features, hidden_features, bias=bias)
|
| 91 |
+
|
| 92 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 93 |
+
x = F.silu(self.fc1(x)) * self.fc3(x)
|
| 94 |
+
x = self.fc2(x)
|
| 95 |
+
return x
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
class AIMv2PatchEmbed(nn.Module):
|
| 99 |
+
def __init__(self, config: AIMv2VisionOrTextConfig):
|
| 100 |
+
super().__init__()
|
| 101 |
+
self.proj = nn.Conv2d(
|
| 102 |
+
config.num_channels,
|
| 103 |
+
config.hidden_size,
|
| 104 |
+
kernel_size=(config.patch_size, config.patch_size),
|
| 105 |
+
stride=(config.patch_size, config.patch_size),
|
| 106 |
+
)
|
| 107 |
+
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 108 |
+
|
| 109 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 110 |
+
x = self.proj(x).flatten(2).transpose(1, 2)
|
| 111 |
+
x = self.norm(x)
|
| 112 |
+
return x
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
class AIMv2ViTPreprocessor(nn.Module):
|
| 116 |
+
def __init__(self, config: AIMv2VisionConfig):
|
| 117 |
+
super().__init__()
|
| 118 |
+
num_patches = (config.image_size // config.patch_size) ** 2
|
| 119 |
+
|
| 120 |
+
self.patchifier = AIMv2PatchEmbed(config)
|
| 121 |
+
self.pos_embed = nn.Parameter(torch.zeros((1, num_patches, config.hidden_size)))
|
| 122 |
+
|
| 123 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 124 |
+
tokens = self.patchifier(x)
|
| 125 |
+
_, N, _ = tokens.shape
|
| 126 |
+
pos_embed = self.pos_embed.to(tokens.device)
|
| 127 |
+
tokens = tokens + pos_embed[:, :N]
|
| 128 |
+
return tokens
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
class AIMv2Attention(nn.Module):
|
| 132 |
+
def __init__(self, config: AIMv2VisionOrTextConfig):
|
| 133 |
+
super().__init__()
|
| 134 |
+
dim = config.hidden_size
|
| 135 |
+
|
| 136 |
+
self.num_heads = config.num_attention_heads
|
| 137 |
+
self.is_causal = config.is_causal
|
| 138 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=config.qkv_bias)
|
| 139 |
+
self.attn_drop = nn.Dropout(config.attention_dropout)
|
| 140 |
+
self.proj = nn.Linear(dim, dim, bias=config.use_bias)
|
| 141 |
+
self.proj_drop = nn.Dropout(config.projection_dropout)
|
| 142 |
+
|
| 143 |
+
def forward(
|
| 144 |
+
self, x: torch.Tensor, mask: Optional[torch.Tensor] = None
|
| 145 |
+
) -> torch.Tensor:
|
| 146 |
+
B, N, C = x.shape
|
| 147 |
+
qkv = (
|
| 148 |
+
self.qkv(x)
|
| 149 |
+
.reshape(B, N, 3, self.num_heads, C // self.num_heads)
|
| 150 |
+
.permute(2, 0, 3, 1, 4)
|
| 151 |
+
)
|
| 152 |
+
q, k, v = qkv.unbind(0)
|
| 153 |
+
|
| 154 |
+
if mask is None:
|
| 155 |
+
x = F.scaled_dot_product_attention(q, k, v, is_causal=self.is_causal)
|
| 156 |
+
else:
|
| 157 |
+
mask_converter = AttentionMaskConverter(self.is_causal)
|
| 158 |
+
mask = mask_converter.to_4d(
|
| 159 |
+
mask, key_value_length=N, query_length=N, dtype=q.dtype
|
| 160 |
+
)
|
| 161 |
+
x = F.scaled_dot_product_attention(q, k, v, attn_mask=mask)
|
| 162 |
+
|
| 163 |
+
x = x.transpose(1, 2).contiguous().reshape(B, N, C)
|
| 164 |
+
x = self.proj(x)
|
| 165 |
+
x = self.proj_drop(x)
|
| 166 |
+
return x
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
class AIMv2Block(nn.Module):
|
| 170 |
+
def __init__(self, config: AIMv2VisionOrTextConfig):
|
| 171 |
+
super().__init__()
|
| 172 |
+
self.attn = AIMv2Attention(config)
|
| 173 |
+
self.norm_1 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 174 |
+
self.mlp = AIMv2SwiGLUFFN(config)
|
| 175 |
+
self.norm_2 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 176 |
+
|
| 177 |
+
def forward(
|
| 178 |
+
self, x: torch.Tensor, mask: Optional[torch.Tensor] = None
|
| 179 |
+
) -> torch.Tensor:
|
| 180 |
+
x = x + self.attn(self.norm_1(x), mask)
|
| 181 |
+
x = x + self.mlp(self.norm_2(x))
|
| 182 |
+
return x
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
class AIMv2AttentionPoolingHead(nn.Module):
|
| 186 |
+
def __init__(self, config: AIMv2VisionConfig):
|
| 187 |
+
super().__init__()
|
| 188 |
+
dim = config.hidden_size
|
| 189 |
+
qkv_bias = config.qkv_bias
|
| 190 |
+
|
| 191 |
+
self.num_heads = config.num_attention_heads
|
| 192 |
+
self.num_queries = config.num_queries
|
| 193 |
+
|
| 194 |
+
self.k = nn.Linear(dim, dim, bias=qkv_bias)
|
| 195 |
+
self.v = nn.Linear(dim, dim, bias=qkv_bias)
|
| 196 |
+
self.cls_token = nn.Parameter(torch.randn(1, self.num_queries, dim) * 0.02)
|
| 197 |
+
self.linear = nn.Linear(dim, dim, bias=True)
|
| 198 |
+
|
| 199 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 200 |
+
B, N, C = x.shape
|
| 201 |
+
cls_token = self.cls_token.expand(B, -1, -1)
|
| 202 |
+
|
| 203 |
+
q = cls_token.reshape(
|
| 204 |
+
B, self.num_queries, self.num_heads, C // self.num_heads
|
| 205 |
+
).permute(0, 2, 1, 3)
|
| 206 |
+
k = (
|
| 207 |
+
self.k(x)
|
| 208 |
+
.reshape(B, N, self.num_heads, C // self.num_heads)
|
| 209 |
+
.permute(0, 2, 1, 3)
|
| 210 |
+
)
|
| 211 |
+
v = (
|
| 212 |
+
self.v(x)
|
| 213 |
+
.reshape(B, N, self.num_heads, C // self.num_heads)
|
| 214 |
+
.permute(0, 2, 1, 3)
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
x_cls = F.scaled_dot_product_attention(q, k, v)
|
| 218 |
+
x_cls = x_cls.transpose(1, 2).reshape(B, self.num_queries, C)
|
| 219 |
+
x_cls = x_cls.mean(dim=1)
|
| 220 |
+
|
| 221 |
+
out = self.linear(x_cls)
|
| 222 |
+
return out
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
class AIMv2Transformer(nn.Module):
|
| 226 |
+
def __init__(self, config: AIMv2VisionOrTextConfig):
|
| 227 |
+
super().__init__()
|
| 228 |
+
self.blocks = nn.ModuleList(
|
| 229 |
+
[AIMv2Block(config) for _ in range(config.num_hidden_layers)]
|
| 230 |
+
)
|
| 231 |
+
self.post_trunk_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 232 |
+
|
| 233 |
+
def forward(
|
| 234 |
+
self,
|
| 235 |
+
tokens: torch.Tensor,
|
| 236 |
+
mask: Optional[torch.Tensor] = None,
|
| 237 |
+
output_hidden_states: bool = False,
|
| 238 |
+
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, ...]]]:
|
| 239 |
+
hidden_states = () if output_hidden_states else None
|
| 240 |
+
for block in self.blocks:
|
| 241 |
+
tokens = block(tokens, mask)
|
| 242 |
+
if output_hidden_states:
|
| 243 |
+
hidden_states += (tokens,)
|
| 244 |
+
tokens = self.post_trunk_norm(tokens)
|
| 245 |
+
return tokens, hidden_states
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
class AIMv2PretrainedModel(PreTrainedModel):
|
| 249 |
+
base_model_prefix = "aimv2"
|
| 250 |
+
_supports_sdpa = True
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
class AIMv2VisionModel(AIMv2PretrainedModel):
|
| 254 |
+
config_class = AIMv2VisionConfig
|
| 255 |
+
main_input_name = "pixel_values"
|
| 256 |
+
_no_split_modules = ["AIMv2ViTPreprocessor", "AIMv2Block"]
|
| 257 |
+
|
| 258 |
+
def __init__(self, config: AIMv2VisionConfig):
|
| 259 |
+
super().__init__(config)
|
| 260 |
+
self.preprocessor = AIMv2ViTPreprocessor(config)
|
| 261 |
+
self.trunk = AIMv2Transformer(config)
|
| 262 |
+
self.head = AIMv2AttentionPoolingHead(config)
|
| 263 |
+
|
| 264 |
+
def forward(
|
| 265 |
+
self,
|
| 266 |
+
pixel_values: torch.Tensor,
|
| 267 |
+
mask: Optional[torch.Tensor] = None,
|
| 268 |
+
output_hidden_states: Optional[bool] = None,
|
| 269 |
+
return_dict: Optional[bool] = None,
|
| 270 |
+
) -> Union[
|
| 271 |
+
Tuple[torch.Tensor],
|
| 272 |
+
Tuple[torch.Tensor, Tuple[torch.Tensor, ...]],
|
| 273 |
+
BaseModelOutputWithNoAttention,
|
| 274 |
+
]:
|
| 275 |
+
if output_hidden_states is None:
|
| 276 |
+
output_hidden_states = self.config.output_hidden_states
|
| 277 |
+
if return_dict is None:
|
| 278 |
+
return_dict = self.config.use_return_dict
|
| 279 |
+
|
| 280 |
+
x = self.preprocessor(pixel_values)
|
| 281 |
+
x, hidden_states = self.trunk(
|
| 282 |
+
x, mask, output_hidden_states=output_hidden_states
|
| 283 |
+
)
|
| 284 |
+
x = self.head(x)
|
| 285 |
+
|
| 286 |
+
if not return_dict:
|
| 287 |
+
res = (x,)
|
| 288 |
+
res += (hidden_states,) if output_hidden_states else ()
|
| 289 |
+
return res
|
| 290 |
+
|
| 291 |
+
return BaseModelOutputWithNoAttention(
|
| 292 |
+
last_hidden_state=x,
|
| 293 |
+
hidden_states=hidden_states,
|
| 294 |
+
)
|
| 295 |
+
|
| 296 |
+
|
| 297 |
+
class AIMv2TextModel(AIMv2PretrainedModel):
|
| 298 |
+
config_class = AIMv2TextConfig
|
| 299 |
+
main_input_name = "input_ids"
|
| 300 |
+
_no_split_modules = ["AIMv2TextPreprocessor", "AIMv2Block"]
|
| 301 |
+
|
| 302 |
+
def __init__(self, config: AIMv2TextConfig):
|
| 303 |
+
super().__init__(config)
|
| 304 |
+
self.preprocessor = AIMv2TextPreprocessor(config)
|
| 305 |
+
self.trunk = AIMv2Transformer(config)
|
| 306 |
+
self.head = AIMv2ExtractEOS()
|
| 307 |
+
|
| 308 |
+
def forward(
|
| 309 |
+
self,
|
| 310 |
+
pixel_values: torch.Tensor,
|
| 311 |
+
mask: Optional[torch.Tensor] = None,
|
| 312 |
+
output_hidden_states: Optional[bool] = None,
|
| 313 |
+
return_dict: Optional[bool] = None,
|
| 314 |
+
) -> Union[
|
| 315 |
+
Tuple[torch.Tensor],
|
| 316 |
+
Tuple[torch.Tensor, Tuple[torch.Tensor, ...]],
|
| 317 |
+
BaseModelOutputWithNoAttention,
|
| 318 |
+
]:
|
| 319 |
+
if output_hidden_states is None:
|
| 320 |
+
output_hidden_states = self.config.output_hidden_states
|
| 321 |
+
if return_dict is None:
|
| 322 |
+
return_dict = self.config.use_return_dict
|
| 323 |
+
|
| 324 |
+
x, eos_token_mask = self.preprocessor(pixel_values)
|
| 325 |
+
x, hidden_states = self.trunk(
|
| 326 |
+
x, mask, output_hidden_states=output_hidden_states
|
| 327 |
+
)
|
| 328 |
+
x = self.head(x, eos_token_mask)
|
| 329 |
+
|
| 330 |
+
if not return_dict:
|
| 331 |
+
res = (x,)
|
| 332 |
+
res += (hidden_states,) if output_hidden_states else ()
|
| 333 |
+
return res
|
| 334 |
+
|
| 335 |
+
return BaseModelOutputWithNoAttention(
|
| 336 |
+
last_hidden_state=x,
|
| 337 |
+
hidden_states=hidden_states,
|
| 338 |
+
)
|
| 339 |
+
|
| 340 |
+
|
| 341 |
+
class AIMv2Model(AIMv2PretrainedModel):
|
| 342 |
+
config_class = AIMv2Config
|
| 343 |
+
main_input_name = ["input_ids", "pixel_values"]
|
| 344 |
+
_no_split_modules = ["AIMv2ViTPreprocessor", "AIMv2TextPreprocessor", "AIMv2Block"]
|
| 345 |
+
|
| 346 |
+
def __init__(self, config: AIMv2Config):
|
| 347 |
+
super().__init__(config)
|
| 348 |
+
self.image_encoder = AIMv2VisionModel(config.vision_config)
|
| 349 |
+
self.text_encoder = AIMv2TextModel(config.text_config)
|
| 350 |
+
|
| 351 |
+
self.image_projector = nn.Linear(
|
| 352 |
+
config.vision_config.hidden_size, config.projection_dim, bias=False
|
| 353 |
+
)
|
| 354 |
+
self.text_projector = nn.Linear(
|
| 355 |
+
config.text_config.hidden_size, config.projection_dim, bias=False
|
| 356 |
+
)
|
| 357 |
+
|
| 358 |
+
self.log_logit_scale = nn.Parameter(
|
| 359 |
+
torch.full([], fill_value=math.log(1.0 / config.init_temperature))
|
| 360 |
+
)
|
| 361 |
+
self.max_log_logit_scale = math.log(config.max_logit_scale)
|
| 362 |
+
|
| 363 |
+
def forward(
|
| 364 |
+
self,
|
| 365 |
+
input_ids: torch.Tensor,
|
| 366 |
+
pixel_values: torch.Tensor,
|
| 367 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 368 |
+
output_hidden_states: Optional[bool] = None,
|
| 369 |
+
return_dict: Optional[bool] = None,
|
| 370 |
+
) -> Union[
|
| 371 |
+
Tuple[
|
| 372 |
+
torch.Tensor,
|
| 373 |
+
torch.Tensor,
|
| 374 |
+
torch.Tensor,
|
| 375 |
+
torch.Tensor,
|
| 376 |
+
Union[Tuple[torch.Tensor, ...], BaseModelOutputWithNoAttention],
|
| 377 |
+
Union[Tuple[torch.Tensor, ...], BaseModelOutputWithNoAttention],
|
| 378 |
+
],
|
| 379 |
+
AIMv2Output,
|
| 380 |
+
]:
|
| 381 |
+
if return_dict is None:
|
| 382 |
+
return_dict = self.config.use_return_dict
|
| 383 |
+
|
| 384 |
+
image_out = self.image_encoder(
|
| 385 |
+
pixel_values,
|
| 386 |
+
output_hidden_states=output_hidden_states,
|
| 387 |
+
return_dict=return_dict,
|
| 388 |
+
)
|
| 389 |
+
image_features = image_out.last_hidden_state if return_dict else image_out[0]
|
| 390 |
+
image_features = self.image_projector(image_features)
|
| 391 |
+
image_features = F.normalize(image_features, p=2, dim=-1)
|
| 392 |
+
|
| 393 |
+
text_out = self.text_encoder(
|
| 394 |
+
input_ids,
|
| 395 |
+
mask=attention_mask,
|
| 396 |
+
output_hidden_states=output_hidden_states,
|
| 397 |
+
return_dict=return_dict,
|
| 398 |
+
)
|
| 399 |
+
text_features = text_out.last_hidden_state if return_dict else text_out[0]
|
| 400 |
+
text_features = self.text_projector(text_features)
|
| 401 |
+
text_features = F.normalize(text_features, p=2, dim=-1)
|
| 402 |
+
|
| 403 |
+
logit_scale = self.log_logit_scale.clamp(0.0, self.max_log_logit_scale).exp()
|
| 404 |
+
logits_per_text = (logit_scale * text_features) @ image_features.t()
|
| 405 |
+
logits_per_image = logits_per_text.t()
|
| 406 |
+
|
| 407 |
+
if not return_dict:
|
| 408 |
+
return (
|
| 409 |
+
logits_per_image,
|
| 410 |
+
logits_per_text,
|
| 411 |
+
image_features,
|
| 412 |
+
text_features,
|
| 413 |
+
image_out,
|
| 414 |
+
text_out,
|
| 415 |
+
)
|
| 416 |
+
|
| 417 |
+
return AIMv2Output(
|
| 418 |
+
logits_per_image=logits_per_image,
|
| 419 |
+
logits_per_text=logits_per_text,
|
| 420 |
+
image_features=image_features,
|
| 421 |
+
text_features=text_features,
|
| 422 |
+
vision_output=image_out,
|
| 423 |
+
text_output=text_out,
|
| 424 |
+
)
|
| 425 |
+
|
| 426 |
+
def get_image_features(
|
| 427 |
+
self,
|
| 428 |
+
input_pixels: torch.Tensor,
|
| 429 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 430 |
+
) -> torch.Tensor:
|
| 431 |
+
out = self.image_encoder(input_pixels, mask=attention_mask, return_dict=True)
|
| 432 |
+
image_features = self.image_projector(out.last_hidden_state)
|
| 433 |
+
return image_features
|
| 434 |
+
|
| 435 |
+
def get_text_features(
|
| 436 |
+
self,
|
| 437 |
+
input_ids: torch.Tensor,
|
| 438 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 439 |
+
) -> torch.Tensor:
|
| 440 |
+
out = self.text_encoder(input_ids, mask=attention_mask, return_dict=True)
|
| 441 |
+
text_features = self.text_projector(out.last_hidden_state)
|
| 442 |
+
return text_features
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"crop_size": {
|
| 3 |
+
"height": 224,
|
| 4 |
+
"width": 224
|
| 5 |
+
},
|
| 6 |
+
"do_center_crop": true,
|
| 7 |
+
"do_convert_rgb": true,
|
| 8 |
+
"do_normalize": true,
|
| 9 |
+
"do_rescale": true,
|
| 10 |
+
"do_resize": true,
|
| 11 |
+
"image_mean": [
|
| 12 |
+
0.48145466,
|
| 13 |
+
0.4578275,
|
| 14 |
+
0.40821073
|
| 15 |
+
],
|
| 16 |
+
"image_processor_type": "CLIPImageProcessor",
|
| 17 |
+
"image_std": [
|
| 18 |
+
0.26862954,
|
| 19 |
+
0.26130258,
|
| 20 |
+
0.27577711
|
| 21 |
+
],
|
| 22 |
+
"processor_class": "CLIPProcessor",
|
| 23 |
+
"resample": 3,
|
| 24 |
+
"rescale_factor": 0.00392156862745098,
|
| 25 |
+
"size": {
|
| 26 |
+
"shortest_edge": 224
|
| 27 |
+
}
|
| 28 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<start_of_text>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": true,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "<end_of_text>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": true,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": "<end_of_text>",
|
| 17 |
+
"unk_token": {
|
| 18 |
+
"content": "<end_of_text>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": true,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
}
|
| 24 |
+
}
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"49406": {
|
| 4 |
+
"content": "<start_of_text>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": true,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"49407": {
|
| 12 |
+
"content": "<end_of_text>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": true,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
}
|
| 19 |
+
},
|
| 20 |
+
"bos_token": "<start_of_text>",
|
| 21 |
+
"clean_up_tokenization_spaces": false,
|
| 22 |
+
"eos_token": "<end_of_text>",
|
| 23 |
+
"errors": "replace",
|
| 24 |
+
"model_max_length": 77,
|
| 25 |
+
"pad_token": "<end_of_text>",
|
| 26 |
+
"processor_class": "CLIPProcessor",
|
| 27 |
+
"tokenizer_class": "CLIPTokenizer",
|
| 28 |
+
"unk_token": "<end_of_text>"
|
| 29 |
+
}
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|