File size: 2,679 Bytes
2350bdf ecc199c df00bdb 2350bdf ecc199c 2350bdf ecc199c 2350bdf ecc199c 2350bdf ecc199c 2350bdf ecc199c 2350bdf ecc199c 2350bdf ecc199c 2350bdf ecc199c 2350bdf ecc199c 2350bdf ecc199c 2350bdf ecc199c 2350bdf ecc199c df00bdb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
---
library_name: transformers
tags:
- object-detection
- license-plate
license: apache-2.0
datasets:
- ariG23498/license-detection-paligemma
base_model:
- google/gemma-3-4b-pt
pipeline_tag: object-detection
---
# Gemma 3 4B Fine-Tuned for Object Detection
This model is a fine-tuned version of Gemma 3 4B for license plate object detection.
| Detected License Plates (Sample 1) | Detected License Plates (Sample 2) |
| :--------------------------------: | :--------------------------------: |
|  |  |
|  | |
## Model Details
### Model Description
This model aims to prove that VLMs **NOT previously** trained for object detection and **without previous knowledge** of location tokens (`<locXXXX>`) can still be fine tuned for object detection out of the box. This is an experimental model.
- **Developed by:** [Aritra Roy Gosthipaty](https://huggingface.co/ariG23498) and [Sergio Paniego](https://huggingface.co/sergiopaniego)
- **Finetuned from model:** [gemma-3-4b-pt](https://huggingface.co/google/gemma-3-4b-pt)
### Model Sources
- [**Repository:**](https://github.com/ariG23498/gemma3-object-detection)
- [**HF Space:**](https://huggingface.co/spaces/ariG23498/gemma3-license-plate-detection)
- [**Collection:**](https://huggingface.co/collections/ariG23498/gemma-3-object-detection-682469cb72084d8ab22460b3)
- [**Dataset:**](https://huggingface.co/datasets/ariG23498/license-detection-paligemma)
## Uses
Follow these steps to configure, train, and run predictions (using the code repository):
1. Configuration (`config.py`): All major parameters are centralized here. Before running any script, review and adjust these settings as needed.
2. Training (`train.py`): This script handles the fine-tuning process.
3. Running inference (`infer.py`): Run this to visualize object detection.
## Citation
If you use our work, please cite us:
```
@misc{gosthipaty_gemma3_object_detection_2025,
author = {Aritra Roy Gosthipaty and Sergio Paniego},
title = {Fine-tuning Gemma 3 for Object Detection},
year = {2025},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/ariG23498/gemma3-object-detection.git}}
}
``` |