File size: 14,062 Bytes
41bd4f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
#!/usr/bin/env python3
"""
Example usage of CodeFormula ONNX model for code and formula recognition.
"""
import onnxruntime as ort
import numpy as np
import cv2
from typing import Dict, List, Union, Optional
import argparse
import os
from PIL import Image
import time
class CodeFormulaONNX:
"""ONNX wrapper for CodeFormula model"""
def __init__(self, model_path: str = "CodeFormula.onnx"):
"""
Initialize CodeFormula ONNX model
Args:
model_path: Path to ONNX model file
"""
print(f"Loading CodeFormula model: {model_path}")
self.session = ort.InferenceSession(model_path)
# Get model input/output information
self.input_name = self.session.get_inputs()[0].name
self.input_shape = self.session.get_inputs()[0].shape
self.input_type = self.session.get_inputs()[0].type
self.output_names = [output.name for output in self.session.get_outputs()]
self.output_shape = self.session.get_outputs()[0].shape
# Model vocabulary size (from output shape)
self.vocab_size = self.output_shape[-1] if len(self.output_shape) > 2 else 50827
self.sequence_length = self.output_shape[-2] if len(self.output_shape) > 2 else 10
print(f"โ Model loaded successfully")
print(f" Input: {self.input_name} {self.input_shape} ({self.input_type})")
print(f" Output: {self.output_shape}")
print(f" Vocabulary size: {self.vocab_size}")
print(f" Sequence length: {self.sequence_length}")
def create_dummy_input(self) -> np.ndarray:
"""Create dummy input tensor for testing"""
if self.input_type == 'tensor(int64)':
# Create dummy token sequence
dummy_input = np.random.randint(0, min(self.vocab_size, 1000), self.input_shape).astype(np.int64)
else:
# Create dummy float input
dummy_input = np.random.randn(*self.input_shape).astype(np.float32)
return dummy_input
def preprocess_image(self, image: Union[str, np.ndarray], target_dpi: int = 120) -> np.ndarray:
"""
Preprocess image for CodeFormula inference
Note: This is a simplified preprocessing. The actual CodeFormula model
requires specific preprocessing that converts images to token sequences.
"""
if isinstance(image, str):
# Load image from path
pil_image = Image.open(image).convert('RGB')
image_array = np.array(pil_image)
else:
image_array = image.copy()
# CodeFormula expects 120 DPI images
print(f" Processing image at {target_dpi} DPI...")
# Resize image for better OCR (adjust based on DPI)
height, width = image_array.shape[:2]
# Scale to approximate 120 DPI resolution
# This is a simplified scaling - actual implementation would be more sophisticated
scale_factor = target_dpi / 72.0 # Assume base 72 DPI
new_height = int(height * scale_factor)
new_width = int(width * scale_factor)
if new_height != height or new_width != width:
image_array = cv2.resize(image_array, (new_width, new_height), interpolation=cv2.INTER_CUBIC)
# Convert to grayscale for better text recognition
if len(image_array.shape) == 3:
gray = cv2.cvtColor(image_array, cv2.COLOR_RGB2GRAY)
else:
gray = image_array
# Enhance contrast for better recognition
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
enhanced = clahe.apply(gray)
# Apply denoising
denoised = cv2.fastNlMeansDenoising(enhanced)
print(f" Image preprocessed: {image_array.shape} -> {denoised.shape}")
# For this example, we create dummy token input since we don't have the actual tokenizer
# In practice, you would use the CodeFormula tokenizer to convert the processed image to tokens
dummy_tokens = self.create_dummy_input()
return dummy_tokens
def predict(self, input_tokens: np.ndarray) -> np.ndarray:
"""Run CodeFormula prediction"""
# Validate input shape
expected_shape = tuple(self.input_shape)
if input_tokens.shape != expected_shape:
print(f"Warning: Input shape {input_tokens.shape} != expected {expected_shape}")
# Run inference
outputs = self.session.run(None, {self.input_name: input_tokens})
return outputs[0] # Return logits [batch, sequence, vocab]
def decode_output(self, logits: np.ndarray, top_k: int = 1) -> Dict:
"""
Decode model output logits
Args:
logits: Model output logits [batch, sequence, vocab]
top_k: Number of top predictions to return
Returns:
Dictionary with decoded results
"""
batch_size, seq_len, vocab_size = logits.shape
# Get top-k predictions for each position
top_k_indices = np.argsort(logits[0], axis=-1)[:, -top_k:] # [seq_len, top_k]
top_k_logits = np.take_along_axis(logits[0], top_k_indices, axis=-1) # [seq_len, top_k]
# Convert logits to probabilities
probabilities = self._softmax(top_k_logits)
# Get the most likely sequence (greedy decoding)
predicted_tokens = np.argmax(logits[0], axis=-1) # [seq_len]
max_probabilities = np.max(probabilities, axis=-1) # [seq_len]
result = {
"predicted_tokens": predicted_tokens.tolist(),
"probabilities": max_probabilities.tolist(),
"mean_confidence": float(np.mean(max_probabilities)),
"max_confidence": float(np.max(max_probabilities)),
"min_confidence": float(np.min(max_probabilities)),
"sequence_length": int(seq_len),
"top_k_predictions": {
"indices": top_k_indices.tolist(),
"probabilities": probabilities.tolist()
}
}
return result
def _softmax(self, x: np.ndarray) -> np.ndarray:
"""Apply softmax to convert logits to probabilities"""
exp_x = np.exp(x - np.max(x, axis=-1, keepdims=True))
return exp_x / np.sum(exp_x, axis=-1, keepdims=True)
def recognize(self, image: Union[str, np.ndarray]) -> Dict:
"""
Recognize code or formula from image
Args:
image: Image path or numpy array
Returns:
Dictionary with recognition results
"""
print("๐ Processing image...")
# Preprocess image
input_tokens = self.preprocess_image(image)
print("๐ Running inference...")
# Run inference
logits = self.predict(input_tokens)
print("๐ Decoding results...")
# Decode output
decoded = self.decode_output(logits)
# Classify output type (simplified heuristic)
output_type = self._classify_content_type(decoded["predicted_tokens"])
# Add metadata
result = {
"recognition_type": output_type,
"model_output": decoded,
"processing_info": {
"input_shape": input_tokens.shape,
"output_shape": logits.shape,
"inference_successful": True
}
}
return result
def _classify_content_type(self, tokens: List[int]) -> str:
"""
Classify if the content is likely code or formula
This is a simplified heuristic. In practice, you would:
1. Decode tokens to actual text using the tokenizer
2. Analyze the text content for patterns
3. Look for programming language indicators or mathematical notation
"""
# Simplified classification based on token patterns
unique_tokens = len(set(tokens))
token_variance = np.var(tokens) if len(tokens) > 1 else 0
if unique_tokens > len(tokens) * 0.7:
return "code" # High diversity suggests code
elif token_variance < 100:
return "formula" # Low variance might suggest mathematical notation
else:
return "unknown" # Cannot determine
def benchmark(self, num_iterations: int = 100) -> Dict[str, float]:
"""Benchmark model performance"""
print(f"๐ Running benchmark with {num_iterations} iterations...")
# Create dummy input
dummy_input = self.create_dummy_input()
# Warmup
for _ in range(5):
_ = self.predict(dummy_input)
# Benchmark
times = []
for i in range(num_iterations):
start_time = time.time()
_ = self.predict(dummy_input)
end_time = time.time()
times.append(end_time - start_time)
if (i + 1) % 10 == 0:
print(f" Progress: {i + 1}/{num_iterations}")
# Calculate statistics
times = np.array(times)
stats = {
"mean_time_ms": float(np.mean(times) * 1000),
"std_time_ms": float(np.std(times) * 1000),
"min_time_ms": float(np.min(times) * 1000),
"max_time_ms": float(np.max(times) * 1000),
"median_time_ms": float(np.median(times) * 1000),
"throughput_fps": float(1.0 / np.mean(times)),
"total_iterations": num_iterations
}
return stats
def main():
parser = argparse.ArgumentParser(description="CodeFormula ONNX Example")
parser.add_argument("--model", type=str, default="CodeFormula.onnx",
help="Path to CodeFormula ONNX model")
parser.add_argument("--image", type=str,
help="Path to image file (code snippet or formula)")
parser.add_argument("--benchmark", action="store_true",
help="Run performance benchmark")
parser.add_argument("--iterations", type=int, default=100,
help="Number of benchmark iterations")
args = parser.parse_args()
# Check if model file exists
if not os.path.exists(args.model):
print(f"โ Error: Model file not found: {args.model}")
print("Please ensure the ONNX model file is in the current directory.")
return
# Initialize model
print("=" * 60)
print("CodeFormula ONNX Example")
print("=" * 60)
try:
codeformula = CodeFormulaONNX(args.model)
except Exception as e:
print(f"โ Error loading model: {e}")
return
# Run benchmark if requested
if args.benchmark:
print(f"\n๐ Running performance benchmark...")
try:
stats = codeformula.benchmark(args.iterations)
print(f"\n๐ Benchmark Results:")
print(f" Mean inference time: {stats['mean_time_ms']:.2f} ยฑ {stats['std_time_ms']:.2f} ms")
print(f" Median inference time: {stats['median_time_ms']:.2f} ms")
print(f" Min/Max: {stats['min_time_ms']:.2f} / {stats['max_time_ms']:.2f} ms")
print(f" Throughput: {stats['throughput_fps']:.1f} FPS")
except Exception as e:
print(f"โ Benchmark failed: {e}")
# Process image if provided
if args.image:
if not os.path.exists(args.image):
print(f"โ Error: Image file not found: {args.image}")
return
print(f"\n๐ผ๏ธ Processing image: {args.image}")
try:
# Process image
result = codeformula.recognize(args.image)
print(f"\nโ
Recognition completed:")
print(f" Content type: {result['recognition_type']}")
print(f" Confidence: {result['model_output']['mean_confidence']:.3f}")
print(f" Sequence length: {result['model_output']['sequence_length']}")
print(f" Predicted tokens: {result['model_output']['predicted_tokens'][:10]}{'...' if len(result['model_output']['predicted_tokens']) > 10 else ''}")
# Note about tokenizer
print(f"\n๐ Note: This example uses dummy token decoding.")
print(f" For actual text output, integrate with CodeFormula tokenizer.")
except Exception as e:
print(f"โ Error processing image: {e}")
import traceback
traceback.print_exc()
# Demo with dummy data if no image provided
if not args.image and not args.benchmark:
print(f"\n๐ฌ Running demo with dummy data...")
try:
# Create dummy image
dummy_image = np.random.randint(0, 255, (400, 600, 3), dtype=np.uint8)
# Process dummy image
result = codeformula.recognize(dummy_image)
print(f"โ
Demo completed:")
print(f" Content type: {result['recognition_type']}")
print(f" Mean confidence: {result['model_output']['mean_confidence']:.3f}")
print(f" Processing info: {result['processing_info']}")
print(f"\n๐ Note: This was a demonstration with random data.")
except Exception as e:
print(f"โ Demo failed: {e}")
print(f"\nโ
Example completed successfully!")
print(f"\nUsage examples:")
print(f" Process image: python example.py --image code_snippet.jpg")
print(f" Run benchmark: python example.py --benchmark --iterations 50")
print(f" Both: python example.py --image formula.png --benchmark")
if __name__ == "__main__":
main() |