--- license: mit library_name: transformers pipeline_tag: text-generation language: - en tags: - gpt2 - historical - london - slm - small-language-model - text-generation - history - english - safetensors --- # London Historical LLM โ€“ Small Language Model (SLM) A compact GPT-2 Small model (~117M params) **trained from scratch** on historical London texts (1500โ€“1850). Fast to run on CPU, and supports NVIDIA (CUDA) and AMD (ROCm) GPUs. > **Note**: This model was **trained from scratch** - not fine-tuned from existing models. > This page includes simple **virtual-env setup**, **install choices for CPU/CUDA/ROCm**, and an **auto-device inference** example so anyone can get going quickly. --- ## ๐Ÿ”Ž Model Description This is a **Small Language Model (SLM)** version of the London Historical LLM, **trained from scratch** using GPT-2 Small architecture on historical London texts with a custom historical tokenizer. The model was built from the ground up, not fine-tuned from existing models. ### Key Features - ~117M parameters (vs ~354M in the full model) - Custom historical tokenizer (โ‰ˆ30k vocab) - London-specific context awareness and historical language patterns (e.g., *thou, thee, hath*) - Lower memory footprint and faster inference on commodity hardware - **Trained from scratch** - not fine-tuned from existing models --- ## ๐Ÿงช Intended Use & Limitations **Use cases:** historical-style narrative generation, prompt-based exploration of London themes (1500โ€“1850), creative writing aids. **Limitations:** may produce anachronisms or historically inaccurate statements; smaller models have less complex reasoning than larger LLMs. Validate outputs before downstream use. --- ## ๐Ÿ Set up a virtual environment (Linux/macOS/Windows) > Virtual environments isolate project dependencies. Official Python docs: `venv`. **Check Python & pip** ```bash # Linux/macOS python3 --version && python3 -m pip --version ``` ```powershell # Windows (PowerShell) python --version; python -m pip --version ``` **Create the env** ```bash # Linux/macOS python3 -m venv helloLondon ``` ```powershell # Windows (PowerShell) python -m venv helloLondon ``` ```cmd :: Windows (Command Prompt) python -m venv helloLondon ``` > **Note**: You can name your virtual environment anything you like, e.g., `.venv`, `my_env`, `london_env`. **Activate** ```bash # Linux/macOS source helloLondon/bin/activate ``` ```powershell # Windows (PowerShell) .\helloLondon\Scripts\Activate.ps1 ``` ```cmd :: Windows (CMD) .\helloLondon\Scripts\activate.bat ``` > If PowerShell blocks activation (*"running scripts is disabled"*), set the policy then retry activation: ```powershell Set-ExecutionPolicy -Scope CurrentUser -ExecutionPolicy RemoteSigned # or just for this session: Set-ExecutionPolicy -Scope Process -ExecutionPolicy Bypass ``` --- ## ๐Ÿ“ฆ Install libraries Upgrade basics, then install Hugging Face libs: ```bash python -m pip install -U pip setuptools wheel python -m pip install "transformers" "accelerate" "safetensors" ``` --- ## Install **one** PyTorch variant (CPU / NVIDIA / AMD) Use **one** of the commands below. For the most accurate command per OS/accelerator and version, prefer PyTorch's **Get Started** selector. ### A) CPU-only (Linux/Windows/macOS) ```bash pip install torch --index-url https://download.pytorch.org/whl/cpu ``` ### B) NVIDIA GPU (CUDA) Pick the CUDA series that matches your system (examples below): ```bash # CUDA 12.6 pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu126 # CUDA 12.4 pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu124 # CUDA 11.8 pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 ``` ### C) AMD GPU (ROCm, **Linux-only**) Install the ROCm build matching your ROCm runtime (examples): ```bash # ROCm 6.3 pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.3 # ROCm 6.2 (incl. 6.2.x) pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.2.4 # ROCm 6.1 pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.1 ``` **Quick sanity check** ```bash python - <<'PY' import torch print("torch:", torch.__version__) print("GPU available:", torch.cuda.is_available()) if torch.cuda.is_available(): print("device:", torch.cuda.get_device_name(0)) PY ``` --- ## ๐Ÿš€ Inference (auto-detect device) This snippet picks the best device (CUDA/ROCm if available, else CPU) and uses sensible generation defaults for this SLM. ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch model_id = "bahree/london-historical-slm" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) device = "cuda" if torch.cuda.is_available() else "cpu" model = model.to(device) prompt = "In the year 1834, I walked through the streets of London and witnessed" inputs = tokenizer(prompt, return_tensors="pt").to(device) outputs = model.generate( inputs["input_ids"], max_new_tokens=50, do_sample=True, temperature=0.8, top_p=0.95, top_k=40, repetition_penalty=1.2, no_repeat_ngram_size=3, pad_token_id=tokenizer.eos_token_id, eos_token_id=tokenizer.eos_token_id, early_stopping=True, ) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## ๐Ÿงช **Testing Your Model** ### **Quick Testing (10 Automated Prompts)** ```bash # Test with 10 automated historical prompts python 06_inference/test_published_models.py --model_type slm ``` **Expected Output:** ``` ๐Ÿงช Testing SLM Model: bahree/london-historical-slm ============================================================ ๐Ÿ“‚ Loading model... โœ… Model loaded in 8.91 seconds ๐Ÿ“Š Model Info: Type: SLM Description: Small Language Model (117M parameters) Device: cuda Vocabulary size: 30,000 Max length: 512 ๐ŸŽฏ Testing generation with 10 prompts... [10 automated tests with historical text generation] ``` ### **Interactive Testing** ```bash # Interactive mode for custom prompts python 06_inference/inference_unified.py --published --model_type slm --interactive # Single prompt test python 06_inference/inference_unified.py --published --model_type slm --prompt "In the year 1834, I walked through the streets of London and witnessed" ``` **Need more headroom later?** Load with ๐Ÿค— Accelerate and `device_map="auto"` to spread layers across available devices/CPU automatically. ```python from transformers import AutoTokenizer, AutoModelForCausalLM tok = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto") ``` --- ## ๐ŸชŸ Windows Terminal one-liners **PowerShell** ```powershell python -c "from transformers import AutoTokenizer,AutoModelForCausalLM; m='bahree/london-historical-slm'; t=AutoTokenizer.from_pretrained(m); model=AutoModelForCausalLM.from_pretrained(m); p='In the year 1834, I walked through the streets of London and witnessed'; i=t(p,return_tensors='pt'); print(t.decode(model.generate(i['input_ids'],max_new_tokens=50,do_sample=True)[0],skip_special_tokens=True))" ``` **Command Prompt (CMD)** ```cmd python -c "from transformers import AutoTokenizer, AutoModelForCausalLM ^&^& import torch ^&^& m='bahree/london-historical-slm' ^&^& t=AutoTokenizer.from_pretrained(m) ^&^& model=AutoModelForCausalLM.from_pretrained(m) ^&^& p='In the year 1834, I walked through the streets of London and witnessed' ^&^& i=t(p, return_tensors='pt') ^&^& print(t.decode(model.generate(i['input_ids'], max_new_tokens=50, do_sample=True)[0], skip_special_tokens=True))" ``` --- ## ๐Ÿ’ก Basic Usage (Python) ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("bahree/london-historical-slm") model = AutoModelForCausalLM.from_pretrained("bahree/london-historical-slm") if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token prompt = "In the year 1834, I walked through the streets of London and witnessed" inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate( inputs["input_ids"], max_new_tokens=50, do_sample=True, temperature=0.8, top_p=0.95, top_k=40, repetition_penalty=1.2, no_repeat_ngram_size=3, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id, early_stopping=True, ) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` --- ## ๐Ÿงฐ Example Prompts * **Tudor (1558):** "On this day in 1558, Queen Mary has died and โ€ฆ" * **Stuart (1666):** "The Great Fire of London has consumed much of the city, and โ€ฆ" * **Georgian/Victorian:** "As I journeyed through the streets of London, I observed โ€ฆ" * **London specifics:** "Parliament sat in Westminster Hall โ€ฆ", "The Thames flowed dark and mysterious โ€ฆ" --- ## ๐Ÿ› ๏ธ Training Details * **Architecture:** GPT-2 Small (12 layers, hidden size 768) * **Params:** ~117M * **Tokenizer:** custom historical tokenizer (~30k vocab) with London-specific and historical tokens * **Data:** historical London corpus (1500โ€“1850) * **Steps/Epochs:** 30,000 steps (extended training for better convergence) * **Batch/LR:** 32, 3e-4 (optimized for segmented data) * **Hardware:** 2ร— GPU training with Distributed Data Parallel * **Final Training Loss:** 1.395 (43% improvement from 20K steps) * **Model Flops Utilization:** 3.5% (excellent efficiency) * **Training Method:** **Trained from scratch** - not fine-tuned * **Context Length:** 256 tokens (optimized for historical text segments) * **Status:** โœ… **Successfully published and tested** - ready for production use --- ## ๐Ÿ”ค Historical Tokenizer * Compact 30k vocab targeting 1500โ€“1850 English * Tokens for **year/date/name/place/title**, plus **thames**, **westminster**, etc.; includes **thou/thee/hath/doth** style markers --- ## โš ๏ธ Troubleshooting * **`ImportError: AutoModelForCausalLM requires the PyTorch library`** โ†’ Install PyTorch with the correct accelerator variant (see CPU/CUDA/ROCm above or use the official selector). * **AMD GPU not used** โ†’ Ensure you installed a ROCm build and you're on Linux (`pip install ... --index-url https://download.pytorch.org/whl/rocmX.Y`). Verify with `torch.cuda.is_available()` and check the device name. ROCm wheels are Linux-only. * **Running out of VRAM** โ†’ Try smaller batch/sequence lengths, or load with `device_map="auto"` via ๐Ÿค— Accelerate to offload layers to CPU/disk. --- ## ๐Ÿ“š Citation If you use this model, please cite: ```bibtex @misc{london-historical-slm, title = {London Historical LLM - Small Language Model: A Compact GPT-2 for Historical Text Generation}, author = {Amit Bahree}, year = {2025}, url = {https://huggingface.co/bahree/london-historical-slm} } ``` --- ## Repository The complete source code, training scripts, and documentation for this model are available on GitHub: **๐Ÿ”— [https://github.com/bahree/helloLondon](https://github.com/bahree/helloLondon)** This repository includes: - Complete data collection pipeline for 1500-1850 historical English - Custom tokenizer optimized for historical text - Training infrastructure with GPU optimization - Evaluation and deployment tools - Comprehensive documentation and examples ### Quick Start with Repository ```bash git clone https://github.com/bahree/helloLondon.git cd helloLondon python 06_inference/test_published_models.py --model_type slm ``` --- ## ๐Ÿงพ License MIT (see [LICENSE](https://github.com/bahree/helloLondon/blob/main/LICENSE) in repo).