berkamphoon commited on
Commit
5708b8d
·
verified ·
1 Parent(s): edf7370

Training in progress, epoch 1

Browse files
README.md CHANGED
@@ -27,7 +27,7 @@ print(output["generated_text"])
27
 
28
  ## Training procedure
29
 
30
- [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/yoon307-kaist/medgemma-27b-it-dr4-Project/runs/n0ajdo2h)
31
 
32
 
33
  This model was trained with SFT.
 
27
 
28
  ## Training procedure
29
 
30
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/yoon307-kaist/medgemma-27b-it-dr4-Project/runs/md2qaah5)
31
 
32
 
33
  This model was trained with SFT.
adapter_config.json CHANGED
@@ -28,16 +28,16 @@
28
  "rank_pattern": {},
29
  "revision": null,
30
  "target_modules": [
31
- "gate_proj",
32
  "q_proj",
33
- "v_proj",
34
- "o_proj",
35
  "fc1",
36
  "fc2",
37
- "down_proj",
38
- "k_proj",
39
- "out_proj",
40
- "up_proj"
 
41
  ],
42
  "task_type": "CAUSAL_LM",
43
  "trainable_token_indices": null,
 
28
  "rank_pattern": {},
29
  "revision": null,
30
  "target_modules": [
31
+ "out_proj",
32
  "q_proj",
33
+ "k_proj",
 
34
  "fc1",
35
  "fc2",
36
+ "gate_proj",
37
+ "v_proj",
38
+ "o_proj",
39
+ "up_proj",
40
+ "down_proj"
41
  ],
42
  "task_type": "CAUSAL_LM",
43
  "trainable_token_indices": null,
adapter_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3970a91ed296e722a0a69c51d3f666501769b1d90a32776d014bef682f3881de
3
  size 6127553104
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e7416daa15f9e3546c7acc2cc8d97c53a83ba8f13cc7d919d2a14b5098fb268
3
  size 6127553104
runs/Jul20_11-55-00_meedgxh100a/events.out.tfevents.1753026902.meedgxh100a.1324727.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45f7558c6db5183cc387904438acb08fb8bc0ae7b66c3ef1af40a4f394dee7c1
3
+ size 9917
train_medgemma_ft_copy.py CHANGED
@@ -215,9 +215,9 @@ if __name__ == '__main__':
215
  if train:
216
  return random.sample(neg, 5*num_sample), random.sample(pos, num_sample)
217
  else:
218
- # return random.sample(neg, 5*num_sample), pos
219
  # return random.sample(neg, 15), random.sample(pos, 15)
220
- return neg, pos
221
  train_dataset = sum(subset(train_dataset,train=True), [])
222
  val_dataset_raw = sum(subset(val_dataset_raw,train=False), [])
223
 
@@ -286,7 +286,7 @@ if __name__ == '__main__':
286
  from peft import PeftModel
287
  print("🔁 Loading trained PEFT weights...")
288
  # model = PeftModel.from_pretrained(model, exp_name)
289
- model = PeftModel.from_pretrained(model, exp_name+"/checkpoint-598")
290
  # model = PeftModel.from_pretrained(model, "llava-1.5-7b-hf-dr-all/checkpoint-80")
291
  phase= "val"
292
  else:
@@ -309,7 +309,7 @@ if __name__ == '__main__':
309
  save_strategy="epoch", # Save checkpoint every epoch
310
  eval_strategy="steps", # Evaluate every `eval_steps`
311
  eval_steps=10000, # Number of steps between evaluations
312
- learning_rate=1e-3, # Learning rate based on QLoRA paper
313
  bf16=True, # Use bfloat16 precision
314
  max_grad_norm=0.3, # Max gradient norm based on QLoRA paper
315
  warmup_ratio=0.03, # Warmup ratio based on QLoRA paper
 
215
  if train:
216
  return random.sample(neg, 5*num_sample), random.sample(pos, num_sample)
217
  else:
218
+ return random.sample(neg, num_sample), pos
219
  # return random.sample(neg, 15), random.sample(pos, 15)
220
+ # return neg, pos
221
  train_dataset = sum(subset(train_dataset,train=True), [])
222
  val_dataset_raw = sum(subset(val_dataset_raw,train=False), [])
223
 
 
286
  from peft import PeftModel
287
  print("🔁 Loading trained PEFT weights...")
288
  # model = PeftModel.from_pretrained(model, exp_name)
289
+ model = PeftModel.from_pretrained(model, exp_name+"/checkpoint-368")
290
  # model = PeftModel.from_pretrained(model, "llava-1.5-7b-hf-dr-all/checkpoint-80")
291
  phase= "val"
292
  else:
 
309
  save_strategy="epoch", # Save checkpoint every epoch
310
  eval_strategy="steps", # Evaluate every `eval_steps`
311
  eval_steps=10000, # Number of steps between evaluations
312
+ learning_rate=5e-4, # Learning rate based on QLoRA paper
313
  bf16=True, # Use bfloat16 precision
314
  max_grad_norm=0.3, # Max gradient norm based on QLoRA paper
315
  warmup_ratio=0.03, # Warmup ratio based on QLoRA paper
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7f5982150528a15b0c3a536efe19c87a8fe24952006c13cabac89f7509a65aa7
3
  size 5816
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6872e82880b94ff7074d3aa909ee437acad559e5263eff6ee7d85664a176db4
3
  size 5816