--- library_name: transformers language: - tr license: apache-2.0 base_model: openai/whisper-large tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Large TR - BBS results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: tr split: None args: 'config: tr, split: test' metrics: - type: wer value: 13.832450369680386 name: Wer --- # Whisper Large TR - BBS This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2229 - Wer: 13.8325 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.1339 | 0.8857 | 1000 | 0.1939 | 16.2543 | | 0.0687 | 1.7715 | 2000 | 0.1906 | 15.3810 | | 0.0341 | 2.6572 | 3000 | 0.1922 | 15.0570 | | 0.0101 | 3.5430 | 4000 | 0.2055 | 14.4457 | | 0.0025 | 4.4287 | 5000 | 0.2229 | 13.8325 | ### Framework versions - Transformers 4.48.0 - Pytorch 2.7.1+cu126 - Datasets 3.6.0 - Tokenizers 0.21.4