--- base_model: XGenerationLab/XiYanSQL-QwenCoder-7B-2502 tags: - text-generation-inference - transformers license: apache-2.0 --- # Notes in "XGenerationLab/XiYanSQL-QwenCoder-7B-2502": ## Requirements ``` transformers >= 4.37.0 ``` ## Quickstart Here is a simple code snippet for quickly using **XiYanSQL-QwenCoder** model. We provide a Chinese version of the prompt, and you just need to replace the placeholders for "question," "db_schema," and "evidence" to get started. We recommend using our [M-Schema](https://github.com/XGenerationLab/M-Schema) format for the schema; other formats such as DDL are also acceptable, but they may affect performance. Currently, we mainly support mainstream dialects like SQLite, PostgreSQL, and MySQL. ``` nl2sqlite_template_cn = """你是一名{dialect}专家,现在需要阅读并理解下面的【数据库schema】描述,以及可能用到的【参考信息】,并运用{dialect}知识生成sql语句回答【用户问题】。 【用户问题】 {question} 【数据库schema】 {db_schema} 【参考信息】 {evidence} 【用户问题】 {question} ```sql""" import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "beyoru/QwenCoderSQL_bnb_4bit" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.bfloat16, device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) ## dialects -> ['SQLite', 'PostgreSQL', 'MySQL'] prompt = nl2sqlite_template_cn.format(dialect="", db_schema="", question="", evidence="") message = [{'role': 'user', 'content': prompt}] text = tokenizer.apply_chat_template( message, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id, max_new_tokens=1024, temperature=0.1, top_p=0.8, do_sample=True, ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` ## Acknowledgments If you find our work useful, please give us a citation or a like, so we can make a greater contribution to the open-source community!