from transformers import Text2TextGenerationPipeline, AutoModelForSeq2SeqLM, TFAutoModelForSeq2SeqLM, pipeline, TextGenerationPipeline import torch import tensorflow as tf import numpy as np import math class MyTestPipeline(TextGenerationPipeline): def preprocess(self, text, **kwargs): prompt = 'Answer the following question/statement in English without any explanation, do not abbreviate names.' txt = f"<|user|>\n{prompt} {text}\n<|end|>\n<|assistant|>" return self.tokenizer(txt, return_tensors=self.framework) def _forward(self, model_inputs, **generate_kwargs): if self.framework == "pt": in_b, input_length = model_inputs["input_ids"].shape elif self.framework == "tf": in_b, input_length = tf.shape(model_inputs["input_ids"]).numpy() outputs = self.model.generate(**model_inputs, **generate_kwargs, return_dict_in_generate=True, output_scores=True, max_new_tokens=10, do_sample=False) output_ids = outputs.sequences out_b = output_ids.shape[0] if self.framework == "pt": output_ids = output_ids.reshape(in_b, out_b // in_b, *output_ids.shape[1:]) elif self.framework == "tf": output_ids = tf.reshape(output_ids, (in_b, out_b // in_b, *output_ids.shape[1:])) output_sequences = outputs.sequences output_scores = outputs.scores return {"input_ids": output_ids.flatten().flatten(), "generated_sequence": [output_sequences], "output_scores": output_scores, 'prompt_text' : ''} def postprocess(self, model_outputs, **kwargs): guess_text = super().postprocess(model_outputs)[0]['generated_text'].split('\n')[-1].strip() # verifying that the model did generate something (protects against indexing errors) if len(guess_text) > 0 and guess_text[-1] == '.': guess_text = guess_text[:-1] transition_scores = self.model.compute_transition_scores(model_outputs['generated_sequence'][0], model_outputs['output_scores'], normalize_logits=True) log_probs = np.round(np.exp(transition_scores.cpu().numpy()), 3)[0] guess_prob = np.product(log_probs) confidence = (((math.exp(12*(guess_prob - 0.5))) / (1 + math.exp(12 * (guess_prob - 0.5)))) * (1.1)) - 0.05 confidence = max(min(confidence, 1.0), 0.0) return {'guess': guess_text, 'confidence': confidence}