File size: 236,734 Bytes
fb940b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 |
---
base_model: bobox/DeBERTa-ST-AllLayers-v3-checkpoints-tmp
datasets:
- sentence-transformers/all-nli
- tals/vitaminc
- nyu-mll/glue
- allenai/scitail
- sentence-transformers/xsum
- sentence-transformers/sentence-compression
- allenai/sciq
- allenai/qasc
- sentence-transformers/msmarco-msmarco-distilbert-base-v3
- sentence-transformers/natural-questions
- sentence-transformers/trivia-qa
- sentence-transformers/quora-duplicates
- sentence-transformers/gooaq
language:
- en
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:165061
- loss:AdaptiveLayerLoss
- loss:GISTEmbedLoss
- loss:OnlineContrastiveLoss
- loss:MultipleNegativesSymmetricRankingLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: how to move money from one ira account to another?
sentences:
- Apart from getting EPF withdrawal form from your employer, you can download it
from the EPFO portal. If your Universal Account Number (UAN) is linked to your
Aadhar then you can use the Aadhar-based withdrawal form. Otherwise, you can apply
for the withdrawal through UAN's portal.
- PJ Tucker is the worst starter on the Rockets, mainly because he is used as a
minutes eater. He has the third-worst player efficiency rating on the team. He
just doesn't compare in value to the other Houston starters.
- Sign the paperwork and submit it to the new bank or brokerage. Contact your original
trustee to request a direct transfer of your IRA funds to the IRA at the new institution.
If you want to maintain your current investments, your trustee may be able to
make an in-kind transfer, leaving your investments in place.
- source_sentence: The number of COVID-19 cases was more than 241,500 worldwide by
March 20 , 2020 .
sentences:
- More than 5,500 people have died from the disease and over 72,000 have recovered
.
- more than 6,500 deaths have been attributed to COVID-19 .
- As of 20 March , more than 242,000 cases of COVID-19 have been reported in over
170 countries and territories , resulting in more than 9,900 deaths and 87,000
recoveries. On 13 March , the WHO announced that Europe had become the new epicentre
of the pandemic .
- source_sentence: 'Reese Witherspoon says she''s ``deeply embarrassed'''' by her
arrest, Kim Kardashian thinks she would get married again and Farrah Abraham brings
her dad and 3-year-old daughter to her sex tape negotiation:'
sentences:
- Scouts sell $3.5 million in popcorn
- 'Reese Witherspoon is ``deeply embarrassed'''' by arrest, Kim Kardashian thinks
she would get married again:'
- Horse diagnosed with disease
- source_sentence: who played snow queen in once upon a time
sentences:
- Terracotta Army The figures, dating from approximately the late third century
BCE,[1] were discovered in 1974 by local farmers in Lintong District, Xi'an, Shaanxi
province. The figures vary in height according to their roles, with the tallest
being the generals. The figures include warriors, chariots and horses. Estimates
from 2007 were that the three pits containing the Terracotta Army held more than
8,000 soldiers, 130 chariots with 520 horses and 150 cavalry horses, the majority
of which remained buried in the pits nearby Qin Shi Huang's mausoleum.[2] Other
terracotta non-military figures were found in other pits, including officials,
acrobats, strongmen and musicians.
- 'Elizabeth Mitchell Elizabeth Mitchell (born Elizabeth Joanna Robertson: March
27, 1970) is an American actress known for her role as Dr. Juliet Burke on the
ABC series Lost.[1] She also had lead roles on the TV series V and Revolution,
as well as the Snow Queen on Once Upon a Time and as Deb Carpenter on Dead of
Summer. Mitchell has starred in such films as The Santa Clause 2 & 3: The Escape
Clause, Gia and The Purge: Election Year.'
- First Amendment to the United States Constitution The First Amendment (Amendment
I) to the United States Constitution prevents Congress from making any law respecting
an establishment of religion, prohibiting the free exercise of religion, or abridging
the freedom of speech, the freedom of the press, the right to peaceably assemble,
or to petition for a governmental redress of grievances. It was adopted on December
15, 1791, as one of the ten amendments that constitute the Bill of Rights.
- source_sentence: what are light bulbs powered by?
sentences:
- an incandescent light bulb converts electricity into light by sending electricity
through a filament. Incandescence is light from heat energy.. light bulbs are
powered by heat
- Viruses infect and live inside the cells of living organisms.. Life is a living
organism.. viruses infect and live inside the cells of life.
- Pressure receptors are found mainly in the skin.. Pacinian corpuscles are pressure
receptors.. Pacinian corpuscles are found mainly in the skin.
model-index:
- name: SentenceTransformer based on bobox/DeBERTa-ST-AllLayers-v3-checkpoints-tmp
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: StS test
type: StS-test
metrics:
- type: pearson_cosine
value: 0.8821101738384596
name: Pearson Cosine
- type: spearman_cosine
value: 0.8943047751560564
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8704995590187196
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8737012027236009
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8697205121607111
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.871583089708652
name: Spearman Euclidean
- type: pearson_dot
value: 0.8032893366124795
name: Pearson Dot
- type: spearman_dot
value: 0.8087424893555902
name: Spearman Dot
- type: pearson_max
value: 0.8821101738384596
name: Pearson Max
- type: spearman_max
value: 0.8943047751560564
name: Spearman Max
- task:
type: binary-classification
name: Binary Classification
dataset:
name: mrpc test
type: mrpc-test
metrics:
- type: cosine_accuracy
value: 0.7473684210526316
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.7145693302154541
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.8327645051194539
name: Cosine F1
- type: cosine_f1_threshold
value: 0.6522408723831177
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.7218934911242604
name: Cosine Precision
- type: cosine_recall
value: 0.9838709677419355
name: Cosine Recall
- type: cosine_ap
value: 0.8563235829800693
name: Cosine Ap
- type: dot_accuracy
value: 0.7026315789473684
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 14.454626083374023
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.8054607508532423
name: Dot F1
- type: dot_f1_threshold
value: 13.752894401550293
name: Dot F1 Threshold
- type: dot_precision
value: 0.6982248520710059
name: Dot Precision
- type: dot_recall
value: 0.9516129032258065
name: Dot Recall
- type: dot_ap
value: 0.796363256728503
name: Dot Ap
- type: manhattan_accuracy
value: 0.7289473684210527
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 77.57926177978516
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.815742397137746
name: Manhattan F1
- type: manhattan_f1_threshold
value: 79.14703369140625
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.7331189710610932
name: Manhattan Precision
- type: manhattan_recall
value: 0.9193548387096774
name: Manhattan Recall
- type: manhattan_ap
value: 0.8208816982117964
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.7315789473684211
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 3.890326499938965
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.8165467625899281
name: Euclidean F1
- type: euclidean_f1_threshold
value: 3.890326499938965
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.737012987012987
name: Euclidean Precision
- type: euclidean_recall
value: 0.9153225806451613
name: Euclidean Recall
- type: euclidean_ap
value: 0.8252367395643119
name: Euclidean Ap
- type: max_accuracy
value: 0.7473684210526316
name: Max Accuracy
- type: max_accuracy_threshold
value: 77.57926177978516
name: Max Accuracy Threshold
- type: max_f1
value: 0.8327645051194539
name: Max F1
- type: max_f1_threshold
value: 79.14703369140625
name: Max F1 Threshold
- type: max_precision
value: 0.737012987012987
name: Max Precision
- type: max_recall
value: 0.9838709677419355
name: Max Recall
- type: max_ap
value: 0.8563235829800693
name: Max Ap
- task:
type: binary-classification
name: Binary Classification
dataset:
name: Vitaminc test
type: Vitaminc-test
metrics:
- type: cosine_accuracy
value: 0.5684210526315789
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.7028586268424988
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.6755218216318786
name: Cosine F1
- type: cosine_f1_threshold
value: 0.5077509880065918
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.52046783625731
name: Cosine Precision
- type: cosine_recall
value: 0.9621621621621622
name: Cosine Recall
- type: cosine_ap
value: 0.5651043866206488
name: Cosine Ap
- type: dot_accuracy
value: 0.5684210526315789
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 19.693286895751953
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.6691449814126395
name: Dot F1
- type: dot_f1_threshold
value: 13.839346885681152
name: Dot F1 Threshold
- type: dot_precision
value: 0.509915014164306
name: Dot Precision
- type: dot_recall
value: 0.972972972972973
name: Dot Recall
- type: dot_ap
value: 0.5463931769790206
name: Dot Ap
- type: manhattan_accuracy
value: 0.5815789473684211
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 87.21337890625
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.6666666666666667
name: Manhattan F1
- type: manhattan_f1_threshold
value: 141.26380920410156
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.505586592178771
name: Manhattan Precision
- type: manhattan_recall
value: 0.9783783783783784
name: Manhattan Recall
- type: manhattan_ap
value: 0.5572154085134091
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.5894736842105263
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 4.252468585968018
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.6666666666666666
name: Euclidean F1
- type: euclidean_f1_threshold
value: 6.922356128692627
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.5041551246537396
name: Euclidean Precision
- type: euclidean_recall
value: 0.9837837837837838
name: Euclidean Recall
- type: euclidean_ap
value: 0.5569049511912931
name: Euclidean Ap
- type: max_accuracy
value: 0.5894736842105263
name: Max Accuracy
- type: max_accuracy_threshold
value: 87.21337890625
name: Max Accuracy Threshold
- type: max_f1
value: 0.6755218216318786
name: Max F1
- type: max_f1_threshold
value: 141.26380920410156
name: Max F1 Threshold
- type: max_precision
value: 0.52046783625731
name: Max Precision
- type: max_recall
value: 0.9837837837837838
name: Max Recall
- type: max_ap
value: 0.5651043866206488
name: Max Ap
---
# SentenceTransformer based on bobox/DeBERTa-ST-AllLayers-v3-checkpoints-tmp
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [bobox/DeBERTa-ST-AllLayers-v3-checkpoints-tmp](https://huggingface.co/bobox/DeBERTa-ST-AllLayers-v3-checkpoints-tmp) on the [nli-pairs](https://huggingface.co/datasets/sentence-transformers/all-nli), [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc), [qnli-contrastive](https://huggingface.co/datasets/nyu-mll/glue), [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail), [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail), [xsum-pairs](https://huggingface.co/datasets/sentence-transformers/xsum), [compression-pairs](https://huggingface.co/datasets/sentence-transformers/sentence-compression), [compression-pairs2](https://huggingface.co/datasets/sentence-transformers/sentence-compression), [compression-pairs3](https://huggingface.co/datasets/sentence-transformers/sentence-compression), [sciq_pairs](https://huggingface.co/datasets/allenai/sciq), [qasc_pairs](https://huggingface.co/datasets/allenai/qasc), [qasc_facts_sym](https://huggingface.co/datasets/allenai/qasc), openbookqa_pairs, [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3), [msmarco_pairs2](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3), [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions), [nq_pairs2](https://huggingface.co/datasets/sentence-transformers/natural-questions), [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa), [quora_pairs](https://huggingface.co/datasets/sentence-transformers/quora-duplicates), [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq), [gooaq_pairs2](https://huggingface.co/datasets/sentence-transformers/gooaq) and [mrpc_pairs](https://huggingface.co/datasets/nyu-mll/glue) datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [bobox/DeBERTa-ST-AllLayers-v3-checkpoints-tmp](https://huggingface.co/bobox/DeBERTa-ST-AllLayers-v3-checkpoints-tmp) <!-- at revision 4859fef4e21d101c2d445bcd33db1e3308f35dc4 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Datasets:**
- [nli-pairs](https://huggingface.co/datasets/sentence-transformers/all-nli)
- [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc)
- [qnli-contrastive](https://huggingface.co/datasets/nyu-mll/glue)
- [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail)
- [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail)
- [xsum-pairs](https://huggingface.co/datasets/sentence-transformers/xsum)
- [compression-pairs](https://huggingface.co/datasets/sentence-transformers/sentence-compression)
- [compression-pairs2](https://huggingface.co/datasets/sentence-transformers/sentence-compression)
- [compression-pairs3](https://huggingface.co/datasets/sentence-transformers/sentence-compression)
- [sciq_pairs](https://huggingface.co/datasets/allenai/sciq)
- [qasc_pairs](https://huggingface.co/datasets/allenai/qasc)
- [qasc_facts_sym](https://huggingface.co/datasets/allenai/qasc)
- openbookqa_pairs
- [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3)
- [msmarco_pairs2](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3)
- [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions)
- [nq_pairs2](https://huggingface.co/datasets/sentence-transformers/natural-questions)
- [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa)
- [quora_pairs](https://huggingface.co/datasets/sentence-transformers/quora-duplicates)
- [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq)
- [gooaq_pairs2](https://huggingface.co/datasets/sentence-transformers/gooaq)
- [mrpc_pairs](https://huggingface.co/datasets/nyu-mll/glue)
- **Language:** en
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("bobox/DeBERTa-ST-AllLayers-v3.1bis-checkpoints-tmp")
# Run inference
sentences = [
'what are light bulbs powered by?',
'an incandescent light bulb converts electricity into light by sending electricity through a filament. Incandescence is light from heat energy.. light bulbs are powered by heat',
'Viruses infect and live inside the cells of living organisms.. Life is a living organism.. viruses infect and live inside the cells of life.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `StS-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.8821 |
| **spearman_cosine** | **0.8943** |
| pearson_manhattan | 0.8705 |
| spearman_manhattan | 0.8737 |
| pearson_euclidean | 0.8697 |
| spearman_euclidean | 0.8716 |
| pearson_dot | 0.8033 |
| spearman_dot | 0.8087 |
| pearson_max | 0.8821 |
| spearman_max | 0.8943 |
#### Binary Classification
* Dataset: `mrpc-test`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:-----------------------------|:-----------|
| cosine_accuracy | 0.7474 |
| cosine_accuracy_threshold | 0.7146 |
| cosine_f1 | 0.8328 |
| cosine_f1_threshold | 0.6522 |
| cosine_precision | 0.7219 |
| cosine_recall | 0.9839 |
| cosine_ap | 0.8563 |
| dot_accuracy | 0.7026 |
| dot_accuracy_threshold | 14.4546 |
| dot_f1 | 0.8055 |
| dot_f1_threshold | 13.7529 |
| dot_precision | 0.6982 |
| dot_recall | 0.9516 |
| dot_ap | 0.7964 |
| manhattan_accuracy | 0.7289 |
| manhattan_accuracy_threshold | 77.5793 |
| manhattan_f1 | 0.8157 |
| manhattan_f1_threshold | 79.147 |
| manhattan_precision | 0.7331 |
| manhattan_recall | 0.9194 |
| manhattan_ap | 0.8209 |
| euclidean_accuracy | 0.7316 |
| euclidean_accuracy_threshold | 3.8903 |
| euclidean_f1 | 0.8165 |
| euclidean_f1_threshold | 3.8903 |
| euclidean_precision | 0.737 |
| euclidean_recall | 0.9153 |
| euclidean_ap | 0.8252 |
| max_accuracy | 0.7474 |
| max_accuracy_threshold | 77.5793 |
| max_f1 | 0.8328 |
| max_f1_threshold | 79.147 |
| max_precision | 0.737 |
| max_recall | 0.9839 |
| **max_ap** | **0.8563** |
#### Binary Classification
* Dataset: `Vitaminc-test`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:-----------------------------|:-----------|
| cosine_accuracy | 0.5684 |
| cosine_accuracy_threshold | 0.7029 |
| cosine_f1 | 0.6755 |
| cosine_f1_threshold | 0.5078 |
| cosine_precision | 0.5205 |
| cosine_recall | 0.9622 |
| cosine_ap | 0.5651 |
| dot_accuracy | 0.5684 |
| dot_accuracy_threshold | 19.6933 |
| dot_f1 | 0.6691 |
| dot_f1_threshold | 13.8393 |
| dot_precision | 0.5099 |
| dot_recall | 0.973 |
| dot_ap | 0.5464 |
| manhattan_accuracy | 0.5816 |
| manhattan_accuracy_threshold | 87.2134 |
| manhattan_f1 | 0.6667 |
| manhattan_f1_threshold | 141.2638 |
| manhattan_precision | 0.5056 |
| manhattan_recall | 0.9784 |
| manhattan_ap | 0.5572 |
| euclidean_accuracy | 0.5895 |
| euclidean_accuracy_threshold | 4.2525 |
| euclidean_f1 | 0.6667 |
| euclidean_f1_threshold | 6.9224 |
| euclidean_precision | 0.5042 |
| euclidean_recall | 0.9838 |
| euclidean_ap | 0.5569 |
| max_accuracy | 0.5895 |
| max_accuracy_threshold | 87.2134 |
| max_f1 | 0.6755 |
| max_f1_threshold | 141.2638 |
| max_precision | 0.5205 |
| max_recall | 0.9838 |
| **max_ap** | **0.5651** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Datasets
#### nli-pairs
* Dataset: [nli-pairs](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
* Size: 10,000 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 5 tokens</li><li>mean: 16.62 tokens</li><li>max: 62 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.46 tokens</li><li>max: 29 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:---------------------------------------------------------------------------|:-------------------------------------------------|
| <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> |
| <code>Children smiling and waving at camera</code> | <code>There are children present</code> |
| <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": -1,
"last_layer_weight": 1.75,
"prior_layers_weight": 0.5,
"kl_div_weight": 1.25,
"kl_temperature": 0.9
}
```
#### vitaminc-pairs
* Dataset: [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc) at [be6febb](https://huggingface.co/datasets/tals/vitaminc/tree/be6febb761b0b2807687e61e0b5282e459df2fa0)
* Size: 11,500 training samples
* Columns: <code>claim</code> and <code>evidence</code>
* Approximate statistics based on the first 1000 samples:
| | claim | evidence |
|:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 17.5 tokens</li><li>max: 56 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 38.51 tokens</li><li>max: 381 tokens</li></ul> |
* Samples:
| claim | evidence |
|:--------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Danny Trevathan made more than 100 tackles in the 2013 season .</code> | <code>In the 2013 season , Trevathan led the team with 125 tackles .</code> |
| <code>Katy Perry : Part of Me has grossed over $ 6.7 million internationally and more than $ 32 million globally .</code> | <code>Katy Perry : Part of Me has grossed $ 25,326,071 domestically and $ 6,882,884 internationally , totaling $ 32,208,955 worldwide .</code> |
| <code>Bark at the Moon became Platinum for selling more than 700,000 copies in the United States .</code> | <code>The album peaked at number 19 on the Billboard album chart and within several weeks of release was certified Platinum for over a million sales in the United States alone .</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": -1,
"last_layer_weight": 1.75,
"prior_layers_weight": 0.5,
"kl_div_weight": 1.25,
"kl_temperature": 0.9
}
```
#### qnli-contrastive
* Dataset: [qnli-contrastive](https://huggingface.co/datasets/nyu-mll/glue) at [bcdcba7](https://huggingface.co/datasets/nyu-mll/glue/tree/bcdcba79d07bc864c1c254ccfcedcce55bcc9a8c)
* Size: 13,300 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------|
| type | string | string | int |
| details | <ul><li>min: 6 tokens</li><li>mean: 13.78 tokens</li><li>max: 34 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 35.59 tokens</li><li>max: 178 tokens</li></ul> | <ul><li>0: 100.00%</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:--------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
| <code>How does the Center for Measuring University performance rank Washington University?</code> | <code>According to the Center for Measuring University Performance, it is considered to be one of the top 10 private research universities in the nation.</code> | <code>0</code> |
| <code>Besides tax shifting, what is another need?</code> | <code>Just as there is a need for tax shifting, there is also a need for subsidy shifting.</code> | <code>0</code> |
| <code>How large is the Irish diaspora that was caused by the Great Irish Famine?</code> | <code>However, since the Great Irish Famine, the population of Ireland has fallen to less than one tenth of the population of the British Isles.</code> | <code>0</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "OnlineContrastiveLoss",
"n_layers_per_step": -1,
"last_layer_weight": 0.75,
"prior_layers_weight": 1.25,
"kl_div_weight": 0.8,
"kl_temperature": 0.75
}
```
#### scitail-pairs-qa
* Dataset: [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
* Size: 11,155 training samples
* Columns: <code>sentence2</code> and <code>sentence1</code>
* Approximate statistics based on the first 1000 samples:
| | sentence2 | sentence1 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 15.95 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 15.04 tokens</li><li>max: 41 tokens</li></ul> |
* Samples:
| sentence2 | sentence1 |
|:----------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------|
| <code>The first living cells may have evolved around 4 billion years ago.</code> | <code>The first living cells may have evolved around how long ago?</code> |
| <code>By 8 weeks, all major organs start developing.</code> | <code>By how many weeks do all major organs start developing?</code> |
| <code>Intrinsic muscles allow your fingers to also make precise movements for actions.</code> | <code>Which muscles allow your fingers to also make precise movements for actions?</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": -1,
"last_layer_weight": 1.75,
"prior_layers_weight": 0.5,
"kl_div_weight": 1.25,
"kl_temperature": 0.9
}
```
#### scitail-pairs-pos
* Dataset: [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
* Size: 8,600 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 23.56 tokens</li><li>max: 62 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 15.39 tokens</li><li>max: 35 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:--------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------|
| <code>Retina The retina uses nerve cells known as rods and cones (photoreceptors) to detect light and color.</code> | <code>The light-sensing cells in the retina are called rods and cones.</code> |
| <code>Breakwaters are structures that protect the coast like barrier islands.</code> | <code>The name of artificial barriers that people build to protect shorelines is breakwaters.</code> |
| <code>The speed of the wave is equal to the wavelength times the frequency.</code> | <code>The product of a wave's wavelength and its frequency is its speed.</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": -1,
"last_layer_weight": 1.75,
"prior_layers_weight": 0.5,
"kl_div_weight": 1.25,
"kl_temperature": 0.9
}
```
#### xsum-pairs
* Dataset: [xsum-pairs](https://huggingface.co/datasets/sentence-transformers/xsum) at [788ddaf](https://huggingface.co/datasets/sentence-transformers/xsum/tree/788ddafe04e539956d56b567bc32a036ee7b9206)
* Size: 7,000 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 190.44 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 25.62 tokens</li><li>max: 75 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>The Surrey force said a 51-year-old woman from East Molesey voluntarily spoke to officers.<br>The incident at Hampton Court was filmed by cycling instructor David Williams, 47, who posted it on YouTube.<br>Officers said its traffic and process unit would consider whether to take further action.<br>The woman was given a referral notice of "driving whilst not in proper control of motor vehicle".<br>The police force said it would consider whether the woman should face penalties, including being required to attend a driver improvement course or receive a fixed penalty notice.<br>The alleged incident happened at the junction of Creek Road and the A309 Hampton Court Way in Molesey.</code> | <code>A woman who was filmed allegedly eating a bowl of cereal while driving at a busy junction in south-west London has been interviewed by police.</code> |
| <code>Paul Hegarty was sacked last month, with the Gable Endies picking up one point from three games since his departure.<br>Petrie, 46, leaves his post as as assistant manager at Junior Super League side Broughty Athletic.<br>Born in Dundee, he played for Forfar, Dunfermline and Ross County and had spells in Australia and Singapore.<br>Petrie has previously served as assistant manager at Forfar and Arbroath.<br>"He is highly motivated and enthusiastic, comes with a wealth of playing and coaching experience and most importantly understands the lower leagues of Scottish football," said chairman John Crawford.<br>"I would like to thank John Holt for his support in stepping in and looking after the team since the departure of Paul Hegarty and wish him every success for the future."</code> | <code>Stewart Petrie is the new manager at struggling Montrose, taking over with the club at the foot of League Two.</code> |
| <code>The 28-year-old former Bournemouth, Portsmouth and Leeds United centre-back has signed a three-year contract with the Addicks.<br>Pearce made 33 appearances last season as the Latics won the League One title and becomes Charlton's seventh signing of the summer transfer window.<br>"He's an absolute warrior," boss Russell Slade told the club website.<br>Find all the latest football transfers on our dedicated page.</code> | <code>League One club Charlton Athletic have signed defender Jason Pearce from Wigan for an undisclosed fee.</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "MultipleNegativesSymmetricRankingLoss",
"n_layers_per_step": -1,
"last_layer_weight": 0.75,
"prior_layers_weight": 1.25,
"kl_div_weight": 0.8,
"kl_temperature": 0.75
}
```
#### compression-pairs
* Dataset: [compression-pairs](https://huggingface.co/datasets/sentence-transformers/sentence-compression) at [605bc91](https://huggingface.co/datasets/sentence-transformers/sentence-compression/tree/605bc91d95631895ba25b6eda51a3cb596976c90)
* Size: 4,014 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 11 tokens</li><li>mean: 31.5 tokens</li><li>max: 125 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.17 tokens</li><li>max: 28 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------|
| <code>one who survived one of the city's worst mass shootings but left behind a trail of death and violence in British Columbia and Alberta going back almost a decade.</code> | <code>Victim had survived mass shooting</code> |
| <code>``It's an awesome feeling,'' Vick said of getting the bankruptcy plan approved, which includes how his creditors will be repaid more than $20 million.</code> | <code>Michael Vick's bankruptcy plan approved</code> |
| <code>Kevin Youkilis put on pinstripes and played at Yankee Stadium for the first time as a member of the New York Yankees on Monday afternoon.</code> | <code>Youkilis downplays putting on pinstripes at Yankee Stadium</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "MultipleNegativesSymmetricRankingLoss",
"n_layers_per_step": -1,
"last_layer_weight": 0.75,
"prior_layers_weight": 1.25,
"kl_div_weight": 0.8,
"kl_temperature": 0.75
}
```
#### compression-pairs2
* Dataset: [compression-pairs2](https://huggingface.co/datasets/sentence-transformers/sentence-compression) at [605bc91](https://huggingface.co/datasets/sentence-transformers/sentence-compression/tree/605bc91d95631895ba25b6eda51a3cb596976c90)
* Size: 7,960 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 11 tokens</li><li>mean: 31.9 tokens</li><li>max: 329 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.05 tokens</li><li>max: 22 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
| <code>Industrial Parks in Asia are seeing very strong demand as Foreign Companies take advantage of the many investment incentives on offer.</code> | <code>Industrial Parks in Asia see strong demand</code> |
| <code>Western Australia has the highest loan delinquency rates in the country with two percent of its home loan payments delayed by more than a month compared to the national average of 1.54 percent says Fitch Ratings.</code> | <code>Western Australia has highest delinquency rate in the country</code> |
| <code>Governor Chet Culver today issued a disaster emergency proclamation for Des Moines County in response to severe thunderstorms that hit the area on May 12.</code> | <code>Governor Culver issues disaster proclamation for Des Moines County</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": 3,
"last_layer_weight": 0.15,
"prior_layers_weight": 2.5,
"kl_div_weight": 0.75,
"kl_temperature": 0.5
}
```
#### compression-pairs3
* Dataset: [compression-pairs3](https://huggingface.co/datasets/sentence-transformers/sentence-compression) at [605bc91](https://huggingface.co/datasets/sentence-transformers/sentence-compression/tree/605bc91d95631895ba25b6eda51a3cb596976c90)
* Size: 7,960 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 10 tokens</li><li>mean: 32.24 tokens</li><li>max: 166 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.08 tokens</li><li>max: 22 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
| <code>WHILE London 2012 might seem a bit farfetched for a 17-year-old, water polo player Tuesday Birmingham is hoping her undefeated streak makes selectors sit up and take notice.</code> | <code>Birmingham hoping selectors sit up and take notice</code> |
| <code>Police are searching for a man accused of trying to kidnap a girl from her North Charlotte bus stop.</code> | <code>Police search for man accused of trying to kidnap girl at bus stop</code> |
| <code>NASCAR has ``called a mandatory meeting for all Sprint Cup drivers and team owners for Tuesday morning'' at its Research and Development Center in Concord, North Carolina, according to David Newton of ESPN.com.</code> | <code>NASCAR calls mandatory meeting for Sprint Cup drivers, owners</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"n_layers_per_step": 3,
"last_layer_weight": 0.05,
"prior_layers_weight": 10,
"kl_div_weight": 5,
"kl_temperature": 0.2
}
```
#### sciq_pairs
* Dataset: [sciq_pairs](https://huggingface.co/datasets/allenai/sciq) at [2c94ad3](https://huggingface.co/datasets/allenai/sciq/tree/2c94ad3e1aafab77146f384e23536f97a4849815)
* Size: 10,750 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 6 tokens</li><li>mean: 16.74 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 79.87 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>What do secondary spermatocytes form when completing meiosis?</code> | <code>Spermatogonia lining the seminiferous tubule undergo mitosis to form primary spermatocytes , which are also diploid. The primary spermatocytes undergo the first meiotic division to form secondary spermatocytes , which are haploid. Spermatocytes make up the next layer of cells inside the seminiferous tubule. Finally, the secondary spermatocytes complete meiosis to form spermatids . Spermatids make up a third layer of cells in the tubule.</code> |
| <code>Unlike ammonia, oxygen cannot be liquefied at room temperature because its what is below room temperature?</code> | <code>Check Your Learning Ammonia can be liquefied by compression at room temperature; oxygen cannot be liquefied under these conditions. Why do the two gases exhibit different behavior? Answer: The critical temperature of ammonia is 405.5 K, which is higher than room temperature. The critical temperature of oxygen is below room temperature; thus oxygen cannot be liquefied at room temperature.</code> |
| <code>The distance between two consecutive z discs or z lines is called what?</code> | <code>When a sarcomere shortens, some regions shorten whereas others stay the same length. A sarcomere is defined as the distance between two consecutive Z discs or Z lines; when a muscle contracts, the distance between the Z discs is reduced. The H zone—the central region of the A zone—contains only thick filaments and is shortened during contraction. The I band contains only thin filaments and also shortens. The A band does not shorten—it remains the same length—but A bands of different sarcomeres move closer together during contraction, eventually disappearing. Thin filaments are pulled by the thick filaments toward the center of the sarcomere until the Z discs approach the thick filaments. The zone of overlap, in which thin filaments and thick filaments occupy the same area, increases as the thin filaments move inward.</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": -1,
"last_layer_weight": 1.75,
"prior_layers_weight": 0.5,
"kl_div_weight": 1.25,
"kl_temperature": 0.9
}
```
#### qasc_pairs
* Dataset: [qasc_pairs](https://huggingface.co/datasets/allenai/qasc) at [a34ba20](https://huggingface.co/datasets/allenai/qasc/tree/a34ba204eb9a33b919c10cc08f4f1c8dae5ec070)
* Size: 7,889 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 11.41 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 34.81 tokens</li><li>max: 75 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:-----------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>What is a type of the basic units of the structure and function of living things?</code> | <code>Cells are the basic units of the structure and function of living things.. Osteogenic cell types are indicated.. Osteogenic is a type of the basic units of the structure and function of living things.</code> |
| <code>bacteria can cause people to need what?</code> | <code>bacteria can cause people to become ill. Serious illness needing hospitalization is uncommon.. bacteria can cause people to need hospitalization.</code> |
| <code>What type of energy generated by the bulbs is wasted?</code> | <code>some light bulbs convert electricity into light and heat energy. Since the purpose of a light bulb is to generate light, the heat is wasted energy.. The heat energy generated by the bulbs gets wasted.</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": -1,
"last_layer_weight": 1.75,
"prior_layers_weight": 0.5,
"kl_div_weight": 1.25,
"kl_temperature": 0.9
}
```
#### qasc_facts_sym
* Dataset: [qasc_facts_sym](https://huggingface.co/datasets/allenai/qasc) at [a34ba20](https://huggingface.co/datasets/allenai/qasc/tree/a34ba204eb9a33b919c10cc08f4f1c8dae5ec070)
* Size: 7,889 training samples
* Columns: <code>combinedfact</code> and <code>facts</code>
* Approximate statistics based on the first 1000 samples:
| | combinedfact | facts |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 5 tokens</li><li>mean: 11.82 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 25.18 tokens</li><li>max: 45 tokens</li></ul> |
* Samples:
| combinedfact | facts |
|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>weathering means that rocks are eroded down again.</code> | <code>weathering means breaking down rocks from larger whole into smaller pieces by weather. Erosion breaks the rock down again, and the cycle continues..</code> |
| <code>cutting down trees has a negative impact on the health of humankind</code> | <code>cutting down trees has a negative impact on an ecosystem. When ecosystems are healthy, humankind is healthy..</code> |
| <code>Fossils are formed with sand and mud cover the remains over time</code> | <code>fossils are formed when layers of sediment cover the remains of organisms over time. Sand and mud are examples of sediments..</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "MultipleNegativesSymmetricRankingLoss",
"n_layers_per_step": -1,
"last_layer_weight": 0.75,
"prior_layers_weight": 1.25,
"kl_div_weight": 0.8,
"kl_temperature": 0.75
}
```
#### openbookqa_pairs
* Dataset: openbookqa_pairs
* Size: 4,505 training samples
* Columns: <code>question</code> and <code>fact</code>
* Approximate statistics based on the first 1000 samples:
| | question | fact |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 3 tokens</li><li>mean: 13.81 tokens</li><li>max: 78 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 11.49 tokens</li><li>max: 30 tokens</li></ul> |
* Samples:
| question | fact |
|:-----------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|
| <code>What is animal competition?</code> | <code>if two animals eat the same prey then those animals compete for that pey</code> |
| <code>If you wanted to make a metal bed frame, where would you start?</code> | <code>alloys are made of two or more metals</code> |
| <code>Places lacking warmth have few what</code> | <code>cold environments contain few organisms</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": -1,
"last_layer_weight": 1.75,
"prior_layers_weight": 0.5,
"kl_div_weight": 1.25,
"kl_temperature": 0.9
}
```
#### msmarco_pairs
* Dataset: [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3) at [28ff31e](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3/tree/28ff31e4c97cddd53d298497f766e653f1e666f9)
* Size: 6,875 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 8.68 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 77.4 tokens</li><li>max: 232 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:-----------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>benefits of reishi mushroom</code> | <code>Reishi mushroom has been used to help enhance the immune system, reduce stress, improve sleep, and lessen fatigue. People also take reishi mushroom for health conditions such as: High blood pressure</code> |
| <code>shoulder replacement how long driving</code> | <code>Shoulder Replacement Surger. After undergoing shoulder replacement surgery, it is important to have realistic expectations about the types of activities you may do. Minimal stretching of your new shoulder is recommended throughout your lifetime to maintain your full range of motion.You may give you permission to drive within four weeks after the surgery. If your surgery was on the right side, driving permission may not be. given until a month or six weeks following the surgery.inimal stretching of your new shoulder is recommended throughout your lifetime to maintain your full range of motion. You may give you permission to drive within four weeks after the surgery. If your surgery was on the right side, driving permission may not be. given until a month or six weeks following the surgery.</code> |
| <code>cabinet has how many people in it trump</code> | <code>Should all of President-elect Donald Trumpâs Cabinet nominees eventually be confirmed, he will start his administration with one of the most heavily business-oriented Cabinets in U.S. history. Five of the 15 people Trump has nominated to be Cabinet secretaries have spent all or nearly all their careers in the business world, with no significant public office or senior military service on their résumés.</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": -1,
"last_layer_weight": 1.75,
"prior_layers_weight": 0.5,
"kl_div_weight": 1.25,
"kl_temperature": 0.9
}
```
#### msmarco_pairs2
* Dataset: [msmarco_pairs2](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3) at [28ff31e](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3/tree/28ff31e4c97cddd53d298497f766e653f1e666f9)
* Size: 4,500 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 8.75 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>min: 19 tokens</li><li>mean: 76.9 tokens</li><li>max: 229 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:---------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>when is grant of probate not required</code> | <code>We are frequently asked whether a grant of probate is always required after somebodyâs death. Very small estates under £15,000 do not require a grant while those assets held in joint names (such as bank accounts or property) pass to the survivor on the Deceased persons death, meaning that no grant is required.he grant is a legal document which states the Deceasedâs full name, as well as the Executors entrusted with the administration of the estate. The grant can then be presented to various financial institutions to collect the Deceasedâs assets.</code> |
| <code>what does speculation mean</code> | <code>Wiktionary(3.00 / 1 vote)Rate this definition: 1 speculation(Noun) The process of thinking or meditating on a subject. 2 speculation(Noun) A judgment or conclusion reached by speculating. 3 speculation(Noun) An investment involving higher than normal risk in order to obtain a higher than normal return.</code> |
| <code>what county is mint hill nc</code> | <code>8. 21 Acres Mint Hill, Mecklenburg County, North Carolina $2,310,000. 21 Acres Mint Hill, Mecklenburg County, North Carolina $2,310,000. Great piece of property just waiting for the right buyer. Flat and open and conveniently located at 485 and Idlewild Rd....a rare find indeed!</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": 3,
"last_layer_weight": 0.15,
"prior_layers_weight": 2.5,
"kl_div_weight": 0.75,
"kl_temperature": 0.5
}
```
#### nq_pairs
* Dataset: [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 3,667 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 10 tokens</li><li>mean: 11.85 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 19 tokens</li><li>mean: 132.66 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:-----------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>where are the powers of congress listed in the constitution</code> | <code>Powers of the United States Congress Article I of the Constitution sets forth most of the powers of Congress, which include numerous explicit powers enumerated in Section 8. Constitutional amendments have granted Congress additional powers. Congress also has implied powers derived from the Necessary and Proper Clause of the Constitution.</code> |
| <code>who is the man in we are never ever getting back together</code> | <code>We Are Never Ever Getting Back Together After writing Speak Now (2010) entirely solo, Swift opted to collaborate with different songwriters and producers for Red. Thus, she called Max Martin and Shellback, two songwriters and producers whose work she admired, to discuss a possible collaboration. The trio conceived the concept for "We Are Never Ever Getting Back Together" shortly after a friend of Swift's ex-boyfriend walked into the recording studio and spoke of rumors he heard that Swift and her former flame were reuniting. After the friend left, Martin and Shellback asked Swift to elaborate on the details of the relationship, which she described as "break up, get back together, break up, get back together, just, ugh, the worst". When Martin suggested that they write about the incident. Swift began playing the guitar and singing, "We are never ever......", and the song flowed rapidly afterwards. She described the process as one of the most humorous experiences she had while recording, and said the musical partners matched her expectations. An audio clip of her sarcastically speaking about breakups can be heard before the final chorus.[2] The song is reportedly about Swift's ex, Jake Gyllenhaal, as the two had broken up in January 2011 but had been seen on a date a few days later.[3] After the release of the music video, more clues linking the song to Gyllenhaal emerged,[3] with the actor looking like Gyllenhaal,[4] the actor in the video giving her a scarf as Gyllenhaal had reportedly done for Swift and a bracelet Swift wears in the video that is speculated to look similar to that of which Gyllenhaal was rumored to have given Swift for her birthday.[3]</code> |
| <code>which agreement settled a boundary dispute between british canada and the united states</code> | <code>Alaska boundary dispute Finally, in 1903, the Hay-Herbert Treaty between the United States and Britain entrusted the decision to an arbitration by a mixed tribunal of six members: three Americans (Elihu Root, Secretary of War; Henry Cabot Lodge, senator from Massachusetts; and George Turner, ex-senator from Washington), two Canadians (Sir Louis A. Jette, Lieutenant Governor of Quebec; and Allen B. Aylesworth, K.C., from Toronto), and one Briton (Baron Alverstone). All sides respected Root, but he was a member of the U.S. Cabinet. Canadians ridiculed the choice of the obscure ex-Senator Turner and, especially, Lodge, a leading historian and diplomatic specialist whom they saw as an unobjective.[8]</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": -1,
"last_layer_weight": 1.75,
"prior_layers_weight": 0.5,
"kl_div_weight": 1.25,
"kl_temperature": 0.9
}
```
#### nq_pairs2
* Dataset: [nq_pairs2](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 3,001 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 10 tokens</li><li>mean: 11.8 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 132.85 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:--------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>what do i need to carry a gun in indiana</code> | <code>Gun laws in Indiana Indiana requires a license for carrying a handgun generally, although there are several exceptions. Manner of carry, whether open or concealed, is not explicitly specified in the code, thus the license is required for concealed, open, or transport within vehicle, unless covered by one of the exceptions. A license is not required if carrying on property "owned, rented, leased, or otherwise legally controlled" by the carrier, or carried on another person's legally controlled property if permission has been obtained. A license is not required for carrying at a "gun show, firearm expo, gun owner's club or convention, hunting club, shooting club, or training course", or places where carrier is receiving "firearm related services." A license is also not required at a "shooting range", at a location where one is participating in a "firearms instructional course", or during "legal hunting activity." One may transport a handgun in a vehicle without a license if the handgun is "unloaded", "not readily accessible", and "secured in a case." A violation of is a class A misdemeanor. [5]</code> |
| <code>who plays kristen and susan on days of our lives</code> | <code>Susan Banks Susan Banks is a fictional character on NBC's daytime drama Days of Our Lives. She was played by Eileen Davidson from November 4, 1996 to April 8, 1998, and again in 2014 and 2017. Susan is the eccentric mother of Elvis "EJ" DiMera, and once acted as Kristen Blake's doppelganger. In November 2011, it was announced that Brynn Thayer would take over the role of Susan, since Davidson was committed to The Young and the Restless. Thayer made her brief one-off appearance as Susan on December 7, 2011.[1]</code> |
| <code>what is the revelation in the hero journey</code> | <code>Hero's journey This is the point of realization in which a greater understanding is achieved. Armed with this new knowledge and perception, the hero is resolved and ready for the more difficult part of the adventure.</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": 3,
"last_layer_weight": 0.15,
"prior_layers_weight": 2.5,
"kl_div_weight": 0.75,
"kl_temperature": 0.5
}
```
#### trivia_pairs
* Dataset: [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa) at [a7c36e3](https://huggingface.co/datasets/sentence-transformers/trivia-qa/tree/a7c36e3c8c8c01526bc094d79bf80d4c848b0ad0)
* Size: 9,700 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 16.55 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>min: 27 tokens</li><li>mean: 446.79 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:--------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Most of the Three Tenors come from which country?</code> | <code>The Three Tenors - Pavarotti, Domingo, and Carreras The Three Tenors The Three Tenors Jose Carreras, Placido Domingo, and Luciano Pavarotti The Three Tenors - Luciano Pavarotti, Placido Domingo, and Jose Carreras. Photo By: Yoshikatsu Tsuno / Getty Images By Aaron Green Who Are the Three Tenors? The Three Tenors are made up of three of the world's most famous and beloved operatic tenors which include Jose Carreras, Placido Domingo, and Luciano Pavarotti. Jose Carreras (1946-) Born in Barcelona, Spain, Jose Carreras has been performing since he was 11 years old. Professionally, Carreras began his operatic career on December 19, 1970, when he sang the principal role of Gennaro alongside Montserrat Caballe in Donizetti's Lucrezia Borgia . Aside from performing, Carreras serves as president for the José Carreras International Leukaemia Foundation, which he founded after successfully overcoming his own battle with cancer. Placido Domingo (1941-) With over 100 operas and 147 roles under his belt, Placido Domingo is a seasoned operatic star. Born in Madrid, Spain, the celebrated tenor made his operatic debut as “Alfredo” in La Triviata at Monterrey, Mexico in 1961. Just as Carreras and Pavarotti, Domingo has performed in opera houses around the world. Now in his mid-70s and understanding the changes in his voice, Domingo sings baritone roles instead. In 1993, Domingo founded a young singer competition called Operalia. The competition is open to 18-32 year olds, and is hosted in a different city every year. Out of nearly 1,000 entrants, only the top 40 are selected for the competition. continue reading below our video Great Singers Gone too Soon Luciano Pavarotti (1935-2007) Born in Modena, Italy, Pavarotti had dreams of becoming a soccer goalkeeper, and it turned out he was quite good. However, his interest in music edged its way ahead after he won first place in the Llangollen International Singing Competition in Wales. Pavarotti went on to become one of the first opera stars to have nearly his entire performing career recorded musically and visually. He easily sold out shows and performed for millions of people in single performances. The Origin of the Three Tenors The idea for the Three Tenors came from Mario Dradi, an Italian manager and producer. Dradi's idea was to create a group of tenors for a concert and donate a portion of the proceeds to Jose Carreras's foundation after his successful treatment of leukemia. Jose Carreras, along with his two friends, Placido Domingo and Luciano Pavarotti , agreed to perform as the Three Tenors . Dradi's idea came to fruition on July 7, 1990, the day before the FIFA World Cup in Rome. The concert was watched by over 800 million viewers, and was so well received that when a recording of the concert was released, it became the biggest selling classical album in history. The album, Carreras - Domingo - Pavarotti: the Three Tenors in Concert , set a Guinness World Record. Because of the trio's instant success, they performed at the following three FIFA World Cups: Los Angeles in 1994, Paris in 1998, and Yokohama in 2002. The tremendous reception of the Three Tenors was due largely in part to their incredible voices, down-to-earth, likable personalities, and song selections. The trio would regularly perform classic and well-known operatic arias, as well as popular Broadway show tunes that even the most novice classical music listener could love and appreciate. Given the trio's enormous popularity, imitations of the Three Tenors quickly arose all over the world, including the Three Canadian Tenors, the Chinese Tenors, as well as the Three Mo' Tenors. The Three Tenors: Recommended YouTube Videos The Three Tenors sing "O Sole Mio" (1994) ( Watch on YouTube ) The Three Tenors sing "La donna e mobile" (1994) ( Watch on YouTube ) The Three Tenors sing "Singin' in the Rain" (1994) ( Watch on YouTube ) The Three Tenors sing "New York, New York" (1996) ( Watch on YouTube ) The Three Tenors sing "Ti Voglio Tanto Bene" (1998) ( Watch on YouTube ) The Three Tenors sing "Nessun Dorm</code> |
| <code>What are the two inferior planets in our solar system?</code> | <code>An Overview of the Solar System, it's alignment and pictures The inner solar system contains the Sun , Mercury , Venus , Earth and Mars : The main asteroid belt (not shown) lies between the orbits of Mars and Jupiter. The planets of the outer solar system are Jupiter , Saturn , Uranus , and Neptune ( Pluto is now classified as a dwarf planet): The first thing to notice is that the solar system is mostly empty space. The planets are very small compared to the space between them. Even the dots on the diagrams above are too big to be in proper scale with respect to the sizes of the orbits. The orbits of the planets are ellipses with the Sun at one focus, though all except Mercury are very nearly circular. The orbits of the planets are all more or less in the same plane (called the ecliptic and defined by the plane of the Earth's orbit) . The ecliptic is inclined only 7 degrees from the plane of the Sun's equator. The above diagrams show the relative sizes of the orbits of the eight planets (plus Pluto) from a perspective somewhat above the ecliptic (hence their non-circular appearance). They all orbit in the same direction (counter-clockwise looking down from above the Sun's north pole); all but Venus, Uranus and Pluto also rotate in that same sense. (The above diagrams show correct positions for October 1996 as generated by the excellent planetarium program Starry Night ; there are also many other similar programs available, some free. You can also use Emerald Chronometer on your iPhone or Emerald Observatory on your iPad to find the current positions.) Sizes The above composite shows the eight planets and Pluto with approximately correct relative sizes (see another similar composite and a comparison of the terrestrial planets or Appendix 2 for more). One way to help visualize the relative sizes in the solar system is to imagine a model in which everything is reduced in size by a factor of a billion. Then the model Earth would be about 1.3 cm in diameter (the size of a grape). The Moon would be about 30 cm (about a foot) from the Earth. The Sun would be 1.5 meters in diameter (about the height of a man) and 150 meters (about a city block) from the Earth. Jupiter would be 15 cm in diameter (the size of a large grapefruit) and 5 blocks away from the Sun. Saturn (the size of an orange) would be 10 blocks away; Uranus and Neptune (lemons) 20 and 30 blocks away. A human on this scale would be the size of an atom but the nearest star would be over 40000 km away. Not shown in the above illustrations are the numerous smaller bodies that inhabit the solar system: the satellites of the planets; the large number of asteroids (small rocky bodies) orbiting the Sun, mostly between Mars and Jupiter but also elsewhere; the comets (small icy bodies) which come and go from the inner parts of the solar system in highly elongated orbits and at random orientations to the ecliptic; and the many small icy bodies beyond Neptune in the Kuiper Belt . With a few exceptions, the planetary satellites orbit in the same sense as the planets and approximately in the plane of the ecliptic but this is not generally true for comets and asteroids. The classification of these objects is a matter of minor controversy. Traditionally, the solar system has been divided into planets (the big bodies orbiting the Sun), their satellites (a.k.a. moons, variously sized objects orbiting the planets), asteroids (small dense objects orbiting the Sun) and comets (small icy objects with highly eccentric orbits). Unfortunately, the solar system has been found to be more complicated than this would suggest: there are several moons larger than Pluto and two larger than Mercury; there are many small moons that are probably started out as asteroids and were only later captured by a planet; comets sometimes fizzle out and become indistinguishable from asteroids; the Kuiper Belt objects (including Pluto) and others like Chiron don't fit this scheme well The Earth/Moon and Pluto/Charon systems are sometimes considered "double planets". Other classification</code> |
| <code>What is the word for ‘Friend’ in Swahili?</code> | <code>Swahili Plural Swahili Plural Swahili Lessons Swahili Plural If you're trying to learn Swahili Plural which is also called Kiswahili, check our courses about Plural and Singular... to help you with your Swahili grammar. Try to concentrate on the lesson and notice the pattern that occurs each time the word changes its place. Also don't forget to check the rest of our other lessons listed on Learn Swahili . Enjoy the rest of the lesson! Swahili Plural Learning the Swahili Plural displayed below is vital to the language. Swahili Plurals are grammatical numbers, typically referring to more than one of the referent in the real world. In the English language, singular and plural are the only grammatical numbers. Grammar Tips: mtu amekuja( a person hascome), watu wamekuja( persons have come) msichana ameingia( a girl hasentered), wasichana wameingia ( girls have entered) daktari ametoka( the doctor hasgone ot) Madaktari wametoka( doctors have gone out) This class is called A-WA class as you cansee from sentence construction. * In this class many nouns have prefix m- inthe singular and wa- in the prulal. However there are very many irregular nounsthat don’t follow this rule. E.g Rafiki( friend) Daktari( doctor) Kiwete(lameperson), Rafiki(a friend) becomes: marafiki ( friends) Mwanamke(one woman) becomes: Wanawake (manywomen) Hilii ni gari langu lekundu (this is my redcar) becomes: Haya ni magari yangu mekundu (these are my red cars) Here are some examples:</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": -1,
"last_layer_weight": 1.75,
"prior_layers_weight": 0.5,
"kl_div_weight": 1.25,
"kl_temperature": 0.9
}
```
#### quora_pairs
* Dataset: [quora_pairs](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb)
* Size: 9,822 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 6 tokens</li><li>mean: 13.4 tokens</li><li>max: 37 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.45 tokens</li><li>max: 44 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:-------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------|
| <code>If the world war 3 breaks out, which country would be safest to live and why?</code> | <code>If a global war, or WW3 broke out, which country would be the safest to live in?</code> |
| <code>From where and how to learn math?</code> | <code>How can I learn math?</code> |
| <code>Does any one exist in this universe who never broke down any rules?</code> | <code>Does any one exist in this universe who never broke down the rules?</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": 3,
"last_layer_weight": 0.15,
"prior_layers_weight": 2.5,
"kl_div_weight": 0.75,
"kl_temperature": 0.5
}
```
#### gooaq_pairs
* Dataset: [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 6,875 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 11.39 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 57.58 tokens</li><li>max: 150 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:---------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>are sandwiches bad for cholesterol?</code> | <code>However, if you have started watching your cholesterol and triglycerides, adding those plentiful layers of deli meat could sabotage an otherwise heart-healthy meal. Animal meats contain varying amounts of saturated fat — which may increase lipid levels in your blood.</code> |
| <code>what are the vocal music of mindanao?</code> | <code>Mindanao folk music includes the ancient Muslim folk song and dance called estijaro, and a Mindanao folk song called uruyan. These are usually accompanied by drums, gongs, or other percussion instruments like the subing, a gong.</code> |
| <code>what are immediate cause of death?</code> | <code>Immediate cause of death:The final disease or injury causing the death. Intermediate cause of death: A disease or condition that preceded and caused the immediate cause of death. Underlying cause of death: A disease or condition present before, and leading to, the intermediate or immediate cause of death.</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": -1,
"last_layer_weight": 1.75,
"prior_layers_weight": 0.5,
"kl_div_weight": 1.25,
"kl_temperature": 0.9
}
```
#### gooaq_pairs2
* Dataset: [gooaq_pairs2](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 5,625 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 11.38 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 57.49 tokens</li><li>max: 156 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:-----------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>is mhrb legal in canada?</code> | <code>Canada: The Mimosa Hostilis plant is legal in Canada.</code> |
| <code>are 4k blu ray discs region free?</code> | <code>When it comes to regional restrictions, the good news is 4K Blu-ray discs have just one region code: worldwide. Essentially, they're region-free. They can be played on any 4K player, in any part of the world.</code> |
| <code>are rsd and crps the same?</code> | <code>What is Reflex Sympathetic Dystrophy (RSD) Syndrome? RSD is an older term used to describe one form of Complex Regional Pain Syndrome (CRPS).</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": 3,
"last_layer_weight": 0.15,
"prior_layers_weight": 2.5,
"kl_div_weight": 0.75,
"kl_temperature": 0.5
}
```
#### mrpc_pairs
* Dataset: [mrpc_pairs](https://huggingface.co/datasets/nyu-mll/glue) at [bcdcba7](https://huggingface.co/datasets/nyu-mll/glue/tree/bcdcba79d07bc864c1c254ccfcedcce55bcc9a8c)
* Size: 2,474 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 9 tokens</li><li>mean: 26.45 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 26.45 tokens</li><li>max: 44 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:-------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------|
| <code>Prosecutors filed a motion informing Lee they intend to seek the death penalty .</code> | <code>He added that prosecutors will seek the death penalty .</code> |
| <code>Although Prempro pills were used in the study , the researchers said they had no evidence that other brands were safer .</code> | <code>Athough Prempro pills were used in the study , the researchers say they have no evidence that other brands are safer .</code> |
| <code>D 'Cunha said , from a science standpoint , Toronto 's last case was April 19 , so the all-clear day was actually yesterday .</code> | <code>He said , from a science standpoint , the city 's last case was April 19 , so the all clear day was actually yesterday .</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "MultipleNegativesSymmetricRankingLoss",
"n_layers_per_step": -1,
"last_layer_weight": 0.75,
"prior_layers_weight": 1.25,
"kl_div_weight": 0.8,
"kl_temperature": 0.75
}
```
### Evaluation Datasets
#### nli-pairs
* Dataset: [nli-pairs](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
* Size: 160 evaluation samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 5 tokens</li><li>mean: 17.27 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 9.57 tokens</li><li>max: 21 tokens</li></ul> |
* Samples:
| anchor | positive |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|
| <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> |
| <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> |
| <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>A man selling donuts to a customer.</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": -1,
"last_layer_weight": 1.75,
"prior_layers_weight": 0.5,
"kl_div_weight": 1.25,
"kl_temperature": 0.9
}
```
#### vitaminc-pairs
* Dataset: [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc) at [be6febb](https://huggingface.co/datasets/tals/vitaminc/tree/be6febb761b0b2807687e61e0b5282e459df2fa0)
* Size: 133 evaluation samples
* Columns: <code>claim</code> and <code>evidence</code>
* Approximate statistics based on the first 1000 samples:
| | claim | evidence |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 9 tokens</li><li>mean: 21.43 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 35.38 tokens</li><li>max: 79 tokens</li></ul> |
* Samples:
| claim | evidence |
|:------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Dragon Con had over 5000 guests .</code> | <code>Among the more than 6000 guests and musical performers at the 2009 convention were such notables as Patrick Stewart , William Shatner , Leonard Nimoy , Terry Gilliam , Bruce Boxleitner , James Marsters , and Mary McDonnell .</code> |
| <code>COVID-19 has reached more than 185 countries .</code> | <code>As of , more than cases of COVID-19 have been reported in more than 190 countries and 200 territories , resulting in more than deaths .</code> |
| <code>In March , Italy had 3.6x times more cases of coronavirus than China .</code> | <code>As of 12 March , among nations with at least one million citizens , Italy has the world 's highest per capita rate of positive coronavirus cases at 206.1 cases per million people ( 3.6x times the rate of China ) and is the country with the second-highest number of positive cases as well as of deaths in the world , after China .</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": -1,
"last_layer_weight": 1.75,
"prior_layers_weight": 0.5,
"kl_div_weight": 1.25,
"kl_temperature": 0.9
}
```
#### qnli-contrastive
* Dataset: [qnli-contrastive](https://huggingface.co/datasets/nyu-mll/glue) at [bcdcba7](https://huggingface.co/datasets/nyu-mll/glue/tree/bcdcba79d07bc864c1c254ccfcedcce55bcc9a8c)
* Size: 160 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------|
| type | string | string | int |
| details | <ul><li>min: 7 tokens</li><li>mean: 14.57 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 37.21 tokens</li><li>max: 115 tokens</li></ul> | <ul><li>0: 100.00%</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:--------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
| <code>What came into force after the new constitution was herald?</code> | <code>As of that day, the new constitution heralding the Second Republic came into force.</code> | <code>0</code> |
| <code>What is the first major city in the stream of the Rhine?</code> | <code>The most important tributaries in this area are the Ill below of Strasbourg, the Neckar in Mannheim and the Main across from Mainz.</code> | <code>0</code> |
| <code>What is the minimum required if you want to teach in Canada?</code> | <code>In most provinces a second Bachelor's Degree such as a Bachelor of Education is required to become a qualified teacher.</code> | <code>0</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "OnlineContrastiveLoss",
"n_layers_per_step": -1,
"last_layer_weight": 0.75,
"prior_layers_weight": 1.25,
"kl_div_weight": 0.8,
"kl_temperature": 0.75
}
```
#### scitail-pairs-qa
* Dataset: [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
* Size: 160 evaluation samples
* Columns: <code>sentence2</code> and <code>sentence1</code>
* Approximate statistics based on the first 1000 samples:
| | sentence2 | sentence1 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 15.09 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 14.38 tokens</li><li>max: 30 tokens</li></ul> |
* Samples:
| sentence2 | sentence1 |
|:--------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Modern members of the reptiles group live in many different habitats and are found on every continent except antarctica.</code> | <code>Modern members of what broad animal group live in many different habitats and are found on every continent except antarctica?</code> |
| <code>Plants not only contribute food but oxygen for organisms.</code> | <code>Plants not only contribute food but what else for organisms?</code> |
| <code>The water cycle involves movement of water between air and land.</code> | <code>The water cycle involves movement of water between air and what?</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": -1,
"last_layer_weight": 1.75,
"prior_layers_weight": 0.5,
"kl_div_weight": 1.25,
"kl_temperature": 0.9
}
```
#### scitail-pairs-pos
* Dataset: [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
* Size: 160 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 23.01 tokens</li><li>max: 61 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 15.46 tokens</li><li>max: 36 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:----------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------|
| <code>An introduction to atoms and elements, compounds, atomic structure and bonding, the molecule and chemical reactions.</code> | <code>Replace another in a molecule happens to atoms during a substitution reaction.</code> |
| <code>Wavelength The distance between two consecutive points on a sinusoidal wave that are in phase;</code> | <code>Wavelength is the distance between two corresponding points of adjacent waves called.</code> |
| <code>humans normally have 23 pairs of chromosomes.</code> | <code>Humans typically have 23 pairs pairs of chromosomes.</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": -1,
"last_layer_weight": 1.75,
"prior_layers_weight": 0.5,
"kl_div_weight": 1.25,
"kl_temperature": 0.9
}
```
#### xsum-pairs
* Dataset: [xsum-pairs](https://huggingface.co/datasets/sentence-transformers/xsum) at [788ddaf](https://huggingface.co/datasets/sentence-transformers/xsum/tree/788ddafe04e539956d56b567bc32a036ee7b9206)
* Size: 160 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:-------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 29 tokens</li><li>mean: 178.81 tokens</li><li>max: 350 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 25.62 tokens</li><li>max: 50 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Lily the kid became unwell when she was three weeks old and was taken inside to be looked after.<br>Her owner Rebecca Mineards hopes Lily, who has to wear nappies in the house, will soon be able to return to her mother.<br>Meanwhile, she is learning to play with the household pups and even wrestling their toys away from them.</code> | <code>A sickly baby goat being nursed back to health in Northamptonshire has started behaving like the dogs she shares a home with.</code> |
| <code>It was spotted at Antrim Grammar School on Tuesday morning.<br>"Several attempts were made to safely and humanely manage the animal," a PSNI spokesperson said.<br>"Regrettably, after consultation with the vet working with officers at the scene, we were required to shoot the stag as it had become very agitated and posed a risk to the public."<br>The office of the Police Ombudsman has been informed.<br>Greg Kayne, chairman of the British Deer Society in Northern Ireland, told the BBC: "The professionals on the ground would have had to make a risk assessment and that risk assessment would have been focused on public safety.<br>"Unpalatable though the outcome was for the deer, it sounds as though they had few if any options other than to do what they actually had to do."<br>School principal Hilary Woods said the incident had upset some pupils.<br>"We had to basically keep the school in lockdown until the situation was resolved, and there were a number of pupils who were obviously very distressed when they heard about the final outcome," she said.<br>"It actually ran past some of the pupils when they were outside.<br>"It could have caused damage and it would have been far worse for me as a principal to deal with, if a child or a member of the public had been injured."<br>Pupil Jordan McKelvey, who is 17, said: "I just saw the deer trapped and a lot of people and hearing the gunshots and it was quite distracting in class.<br>"It was quite sad and distressing to see that and hear it."</code> | <code>A police armed response unit has shot dead a large wild stag on the grounds of a school in County Antrim.</code> |
| <code>Rubble fell down the 30m-high (100ft) cliff in East Cliff on 24 April and partially engulfed the Edwardian funicular carriages.<br>Bournemouth Borough Council said the carriages had been removed but work to stabilise the slope was continuing.<br>Environment boss Larry Austin said "all options" were being looked at for reinstating the lift.<br>He said: "We remain committed to the future of a cliff lift. However, it will be some time before these assessments are made and any necessary stabilisation work commences. The cliff lift will not reopen this summer.<br>"Our next step after the removal of the final debris is a thorough assessment of the site to consider the next course of action."<br>An abseiling team was used to secure the carriages of the East Cliff Lift to the running rails ahead of their removal.<br>A temporary road closure remains in place along East Overcliff Drive while the work is carried out.</code> | <code>A cliff railway which was damaged by a landslide in Bournemouth will not reopen this summer, a council has said.</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "MultipleNegativesSymmetricRankingLoss",
"n_layers_per_step": -1,
"last_layer_weight": 0.75,
"prior_layers_weight": 1.25,
"kl_div_weight": 0.8,
"kl_temperature": 0.75
}
```
#### compression-pairs
* Dataset: [compression-pairs](https://huggingface.co/datasets/sentence-transformers/sentence-compression) at [605bc91](https://huggingface.co/datasets/sentence-transformers/sentence-compression/tree/605bc91d95631895ba25b6eda51a3cb596976c90)
* Size: 160 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 15 tokens</li><li>mean: 32.36 tokens</li><li>max: 77 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.5 tokens</li><li>max: 33 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
| <code>Harris Corporation, an international communications and information technology company, has acquired key infrastructure assets of the government business of Core180, Inc. Based in Fairfax, Virginia, Core180 is a telecom network integrator that provides wide area networks and management services to government agencies, large enterprises, telecom carriers and systems integrators.</code> | <code>Harris Corporation acquires infrastructure assets from Core180</code> |
| <code>Road rage is believed to have led to the deadly shooting of a Shreveport man this afternoon.</code> | <code>Road rage could be behind deadly shooting</code> |
| <code>Vice President Hamid Ansari will be undertaking a six-day bilateral visit to Turkey starting from Monday that will further strengthen trade and commerce ties between the two countries.</code> | <code>Hamid Ansari to visit Turkey to strengthen trade and commerce ties</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "MultipleNegativesSymmetricRankingLoss",
"n_layers_per_step": -1,
"last_layer_weight": 0.75,
"prior_layers_weight": 1.25,
"kl_div_weight": 0.8,
"kl_temperature": 0.75
}
```
#### sciq_pairs
* Dataset: [sciq_pairs](https://huggingface.co/datasets/allenai/sciq) at [2c94ad3](https://huggingface.co/datasets/allenai/sciq/tree/2c94ad3e1aafab77146f384e23536f97a4849815)
* Size: 160 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 9 tokens</li><li>mean: 16.81 tokens</li><li>max: 37 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 76.27 tokens</li><li>max: 424 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:---------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Transport epithelia that function in maintaining water balance also often function in disposal of what?</code> | <code></code> |
| <code>What is the 'stuff' that all things are made of?</code> | <code>Living things are made of matter. In fact, matter is the “stuff” of which all things are made. Anything that occupies space and has mass is known as matter. Matter, in turn, consists of chemical substances. A chemical substance is a material that has a definite chemical composition. It is also homogeneous, so the same chemical composition is found uniformly throughout the substance. A chemical substance may be an element or a chemical compound.</code> |
| <code>What is transmitted that makes up the electromagnetic spectrum?</code> | <code>Electromagnetic radiation is energy transmitted as waves with different wavelengths. This makes up the electromagnetic spectrum.</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": -1,
"last_layer_weight": 1.75,
"prior_layers_weight": 0.5,
"kl_div_weight": 1.25,
"kl_temperature": 0.9
}
```
#### qasc_pairs
* Dataset: [qasc_pairs](https://huggingface.co/datasets/allenai/qasc) at [a34ba20](https://huggingface.co/datasets/allenai/qasc/tree/a34ba204eb9a33b919c10cc08f4f1c8dae5ec070)
* Size: 160 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 5 tokens</li><li>mean: 11.19 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 34.3 tokens</li><li>max: 59 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:---------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>what uses unsaturated fatty acids to store energy?</code> | <code>Plants use unsaturated fatty acids to store energy.. All plants are of bush type.. bushes use unsaturated fatty acids to store energy</code> |
| <code>What happens when faults move?</code> | <code>faulting of rock in Earth 's crust causes earthquakes. Faults, cracks in the Earth's crust, produce earthquakes when they move or slip.. Earthquakes happen when faults move. </code> |
| <code>ats and proteins can be used for energy by the cells of what?</code> | <code>Glucose is used for energy by the cells of most organisms.. After hours of no glucose ingestion, fats and proteins can be used for energy.. fats and proteins can be used for energy by the cells of most organisms</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": -1,
"last_layer_weight": 1.75,
"prior_layers_weight": 0.5,
"kl_div_weight": 1.25,
"kl_temperature": 0.9
}
```
#### qasc_facts_sym
* Dataset: [qasc_facts_sym](https://huggingface.co/datasets/allenai/qasc) at [a34ba20](https://huggingface.co/datasets/allenai/qasc/tree/a34ba204eb9a33b919c10cc08f4f1c8dae5ec070)
* Size: 160 evaluation samples
* Columns: <code>combinedfact</code> and <code>facts</code>
* Approximate statistics based on the first 1000 samples:
| | combinedfact | facts |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 5 tokens</li><li>mean: 11.56 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 24.51 tokens</li><li>max: 44 tokens</li></ul> |
* Samples:
| combinedfact | facts |
|:---------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------|
| <code>plasma ionizes metal</code> | <code>plasma is formed by electrons separating from atoms in stars. Metal atoms are ionized in an intense plasma..</code> |
| <code>Sharks use gills to breathe</code> | <code>breathing is when a gill converts from oxygen in water into oxygen in blood. Sharks breathe under water..</code> |
| <code>Gases released during the use of fossil fuels threaten the entire planet.</code> | <code>gases released during the use of fossil fuels causes global warming. Global warming threatens the entire planet..</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "MultipleNegativesSymmetricRankingLoss",
"n_layers_per_step": -1,
"last_layer_weight": 0.75,
"prior_layers_weight": 1.25,
"kl_div_weight": 0.8,
"kl_temperature": 0.75
}
```
#### openbookqa_pairs
* Dataset: openbookqa_pairs
* Size: 160 evaluation samples
* Columns: <code>question</code> and <code>fact</code>
* Approximate statistics based on the first 1000 samples:
| | question | fact |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 3 tokens</li><li>mean: 13.64 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 11.46 tokens</li><li>max: 28 tokens</li></ul> |
* Samples:
| question | fact |
|:-----------------------------------------------------------------------|:-----------------------------------------------------------------------------|
| <code>The thermal production of a stove is generically used for</code> | <code>a stove generates heat for cooking usually</code> |
| <code>What creates a valley?</code> | <code>a valley is formed by a river flowing</code> |
| <code>when it turns day and night on a planet, what cause this?</code> | <code>a planet rotating causes cycles of day and night on that planet</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": -1,
"last_layer_weight": 1.75,
"prior_layers_weight": 0.5,
"kl_div_weight": 1.25,
"kl_temperature": 0.9
}
```
#### msmarco_pairs
* Dataset: [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3) at [28ff31e](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3/tree/28ff31e4c97cddd53d298497f766e653f1e666f9)
* Size: 160 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 8.42 tokens</li><li>max: 17 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 74.97 tokens</li><li>max: 183 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:---------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>who is jesse james decker</code> | <code>Jessie James Decker. Singer/songwriter/designer Kittenish/fave4 For inquiries beautybloggerjjd@gmail.com www.kittenish.com smarturl.it/LDL.</code> |
| <code>what sick day means</code> | <code>sick day noun [C]. ⺠a day for which an âemployee âreceives âpay while âabsent from âwork because of âillness. (Definition of sick day from the Cambridge Academic Content Dictionary © Cambridge University Press).</code> |
| <code>what is pressors</code> | <code>Antihypotensive agent. An antihypotensive agent, also known as a vasopressor agent or pressor, is any medication that tends to raise reduced blood pressure.</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": -1,
"last_layer_weight": 1.75,
"prior_layers_weight": 0.5,
"kl_div_weight": 1.25,
"kl_temperature": 0.9
}
```
#### nq_pairs
* Dataset: [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 160 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 10 tokens</li><li>mean: 12.07 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 19 tokens</li><li>mean: 126.39 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:----------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>what tsar was overthrown in the russian revolution</code> | <code>Russian Revolution The Russian Revolution was a pair of revolutions in Russia in 1917 which dismantled the Tsarist autocracy and led to the rise of the Soviet Union. The Russian Empire collapsed with the abdication of Emperor Nicholas II and the old regime was replaced by a provisional government during the first revolution of February 1917 (March in the Gregorian calendar; the older Julian calendar was in use in Russia at the time). Alongside it arose grassroots community assemblies (called 'soviets') which contended for authority. In the second revolution that October, the Provisional Government was toppled and all power was given to the soviets.</code> |
| <code>who was the longest reigning monarch in the history of england</code> | <code>List of monarchs in Britain by length of reign Queen Elizabeth II became the longest-reigning British monarch on 9 September 2015 when she surpassed the reign of her great-great-grandmother Victoria.[1][2] On 6 February 2017 she became the first British monarch to celebrate a sapphire jubilee, commemorating 65 years on the throne.</code> |
| <code>where does isle of man tt take place</code> | <code>Isle of Man TT The International Isle of Man TT (Tourist Trophy) Race is an annual motorcycle sport event run on the Isle of Man in May or June of most years since its inaugural race in 1907.[3]</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": -1,
"last_layer_weight": 1.75,
"prior_layers_weight": 0.5,
"kl_div_weight": 1.25,
"kl_temperature": 0.9
}
```
#### trivia_pairs
* Dataset: [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa) at [a7c36e3](https://huggingface.co/datasets/sentence-transformers/trivia-qa/tree/a7c36e3c8c8c01526bc094d79bf80d4c848b0ad0)
* Size: 160 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 9 tokens</li><li>mean: 16.94 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 140 tokens</li><li>mean: 463.59 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:---------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Mr Kitty is the pet cat of which character in the US animated tv series ‘South Park’?</code> | <code>South Park Other Recurring Characters / Characters - TV Tropes Supporting Leader : During the "Imaginationland" trilogy. Took a Level in Badass : He was originally quite meek. Then, starting in "Red Sleigh Down", Jesus kicks all sorts of ass. Mayor MacDaniels "My geologist? Now? Tell him the infection is fine and I don't need another check-up." Voiced by: Mary Kay Bergman (1997-1999), Eliza Schneider (1999-2003), April Stewart (2004-present) Debut: "Weight Gain 4000" Corrupt and idiotic mayor of South Park. Bi the Way : She's implied to be in a relationship with Officer Barbrady and slept with Chef, but she's also slept with Mrs. Cartman and was shown looking at a porn magazine of busty women in one episode. Characterization Marches On : Originally she was a lot stupider than most of the other South Park adults, but as they got dumber she's generally become smarter; modern episodes tend to vary on whether she's just as dumb as them or the Only Sane Adult in town. Jerkass : She considers everyone in town a bunch of hillbillies and isn't above trying to convince Barbrady to shoot kids. Took a Level in Kindness : From "Red Hot Catholic Love" and on, he's a Good Shepherd instead of a Fundamentalist . Officer Barbrady "Okay, people, move along. Nothing to see here." Voiced by: Trey Parker Debut: "Cartman Gets an Anal Probe" The town cop. Incredibly stupid and unhelpful, at least in the earlier seasons. His squad car says "To Patronise And Annoy". Coinciding with decreased prominence, it seems that he has gotten more competent over the years. A Day in the Limelight : "Naughty Ninjas" gave him more focus and development than he'd received in years. Anti-Hero : However his heart is in the right place. Bad Cop/Incompetent Cop : Incompetent; the mayor can make him believe the people he left to die in jail never came despite the bodies being in front of him. He apparently killed the chicken lover just to show Cartman how you hit someone with a nightstick. Man Child : When he returns to class so he can learn to read he reverts quickly to a child. The Only Believer : The only member of the South Park Police Department who actually cares about justice. Out of Focus : In later seasons when South Park gets an actual police force. Police Are Useless : Sometimes is unable to deal with the problems in the town. Token Good Teammate : He might be an incompetent moron, but Barbrady is often portrayed as the only member of South Park's police force who is neither corrupt nor racist. "Naughty Ninjas" seems to imply he's the only member of the force who joined to protect the town rather than to beat up minorities. Took a Level in Badass : Grew more competent in later seasons, helping to arrest a pharmacist for selling cough syrup to minors in "Quest for Ratings", warned people about the giant hamsters attacking in "Pandemic", attempted to stop the drunken party in "About Last Night" (here he fails because the partiers tip his car over), and in "Medicinal Fried Chicken", helps to take down the illegal KFC cartel, surviving the shootout between the cops and Colonel Sanders' enforcers. He also saves Jimmy's life from a psychotic GEICO representative in "Sponsored Content". Trauma Conga Line : The entirety of "Naughty Ninjas", with him losing his job, being unable to provide for his sick and elderly dog, and ending up on the street and homeless. Vetinari Job Security : He had this in the first few seasons, when he was the only police officer in South Park. Sergeant Harrison Yates " JESUS CHRIST MONKEY BALLS!!! We could have made an innocent man go to jail who wasn't black!" Voiced by: Trey Parker Debut: "Christian Rock Hard" An incompetent and corrupt police officer who hates rich black people. Works under the Park County Police Department. Anti-Hero : Beating minorities is part of the policework and why the whole precinct save Barbrady joined in. But he tries getting the police job done. Bad Cop/Incompetent Cop : Abuses minorities, arrests someone for calling for a different type of cock magic and takes hours to figure out an obvious</code> |
| <code>Which Roman God is one of the symbols of St Valentine's Day?</code> | <code>The Truth Behind St. Valentine’s Day Home Library Articles Man’s Holidays The Truth Behind St. Valentine’s Day St. Valentine’s Day is the world’s “holiday of love.” Since the Bible states that God is love ( I John 4:8 , 16 ), does He approve of the celebration of this day? Does He want His people—true Christians—partaking of the candy and cards, or any customs associated with this day? Save Subscribe When God says He wants you to live life abundantly ( John 10:10 ), does that include celebrating a festive, seemingly harmless holiday like Valentine’s Day? The God who gives us everything—life, food, drink, the ability to think for ourselves, etc.—surely approves of St. Valentine’s Day, the holiday for lovers to exchange gifts—right? Do not be so certain. Do not assume anything. Do not even take this article’s word for it. Go to history books and encyclopedias. Go to the Bible. Then you will know the real truth behind St. Valentine’s Day. And you will know what God expects you to do about it! Valentine’s Past Like Christmas, Easter, Halloween, New Year’s and other holidays of this world, St. Valentine’s Day is another attempt to “whitewash” perverted customs and observances of pagan gods and idols by “Christianizing” them. As innocent and harmless as St. Valentine’s Day may appear, its traditions and customs originate from two of the most sexually perverted pagan festivals of ancient history: Lupercalia and the feast day of Juno Februata. Celebrated on February 15, Lupercalia (known as the “festival of sexual license”) was held by the ancient Romans in honor of Lupercus, god of fertility and husbandry, protector of herds and crops, and a mighty hunter—especially of wolves. The Romans believed that Lupercus would protect Rome from roving bands of wolves, which devoured livestock and people. Assisted by Vestal Virgins, the Luperci (male priests) conducted purification rites by sacrificing goats and a dog in the Lupercal cave on Palatine Hill, where the Romans believed the twins Romulus and Remus had been sheltered and nursed by a she-wolf before they eventually founded Rome. Clothed in loincloths made from sacrificed goats and smeared in their blood, the Luperci would run about Rome, striking women with februa, thongs made from skins of the sacrificed goats. The Luperci believed that the floggings purified women and guaranteed their fertility and ease of childbirth. February derives from februa or “means of purification.” To the Romans, February was also sacred to Juno Februata, the goddess of febris (“fever”) of love, and of women and marriage. On February 14, billets (small pieces of paper, each of which had the name of a teen-aged girl written on it) were put into a container. Teen-aged boys would then choose one billet at random. The boy and the girl whose name was drawn would become a “couple,” joining in erotic games at feasts and parties celebrated throughout Rome. After the festival, they would remain sexual partners for the rest of the year. This custom was observed in the Roman Empire for centuries. Whitewashing Perversion In A.D. 494, Pope Gelasius renamed the festival of Juno Februata as the “Feast of the Purification of the Virgin Mary.” The date of its observance was later changed from February 14 to February 2, then changed back to the 14. It is also known as Candlemas, the Presentation of the Lord, the Purification of the Blessed Virgin and the Feast of the Presentation of Christ in the Temple. After Constantine had made the Roman church’s brand of Christianity the official religion of the Roman Empire (A.D. 325), church leaders wanted to do away with the pagan festivals of the people. Lupercalia was high on their list. But the Roman citizens thought otherwise. It was not until A.D. 496 that the church at Rome was able to do anything about Lupercalia. Powerless to get rid of it, Pope Gelasius instead changed it from February 15 to the 14th and called it St. Valentine’s Day. It was named after one of that church’s saints, who, in A.D. 270, was executed by the emperor for his beliefs. According to th</code> |
| <code>46664 was the prison number of which famous political figure?</code> | <code>Nelson Mandela Fast Facts - CNN.com Nelson Mandela Fast Facts CNN Library Updated 8:13 PM ET, Tue September 22, 2015 Chat with us in Facebook Messenger. Find out what's happening in the world as it unfolds. Photos: The evolution of Nelson Mandela The evolution of Nelson Mandela – Nelson Mandela, the prisoner-turned-president who reconciled South Africa after the end of apartheid, died on December 5, 2013. He was 95. Hide Caption 1 of 31 Photos: The evolution of Nelson Mandela The evolution of Nelson Mandela – Mandela became president of the African National Congress Youth League in 1951. Hide Caption Photos: The evolution of Nelson Mandela The evolution of Nelson Mandela – Mandela poses for a photo, circa 1950. Hide Caption Photos: The evolution of Nelson Mandela The evolution of Nelson Mandela – Mandela poses in boxing gloves in 1952. Hide Caption 4 of 31 Photos: The evolution of Nelson Mandela The evolution of Nelson Mandela – Mandela in the office of Mandela & Tambo, a law practice set up in Johannesburg by Mandela and Oliver Tambo to provide free or affordable legal representation to black South Africans. Hide Caption 5 of 31 Photos: The evolution of Nelson Mandela The evolution of Nelson Mandela – From left: Patrick Molaoa, Robert Resha and Mandela walk to the courtroom for their treason trial in Johannesburg. Hide Caption 6 of 31 Photos: The evolution of Nelson Mandela The evolution of Nelson Mandela – Mandela married his second wife, social worker Winnie Madikizela, in 1958. At the time, he was an active member of the African National Congress and had begun his lifelong commitment to ending segregation in South Africa. Hide Caption 7 of 31 Photos: The evolution of Nelson Mandela The evolution of Nelson Mandela – Nelson and Winnie Mandela raise their fists to salute a cheering crowd upon his 1990 release from Victor Verster Prison. He was still as upright and proud, he would say, as the day he walked into prison 27 years before. Hide Caption 8 of 31 Photos: The evolution of Nelson Mandela The evolution of Nelson Mandela – A jubilant South African holds up a newspaper announcing Mandela's release from prison at an ANC rally in Soweto on February 11, 1990. Two days later, more than 100,000 people attended a rally celebrating his release from jail. Hide Caption 9 of 31 Photos: The evolution of Nelson Mandela The evolution of Nelson Mandela – Mandela and Zambian President Kenneth Kaunda arrive at an ANC rally on March 3, 1990, in Lusaka, Zambia. Mandela was elected president of the ANC the next year. Hide Caption 10 of 31 Photos: The evolution of Nelson Mandela The evolution of Nelson Mandela – After his release in 1990, Mandela embarked on a world tour, meeting U.S. President George H.W. Bush at the White House in June. Hide Caption 11 of 31 Photos: The evolution of Nelson Mandela The evolution of Nelson Mandela – At his Soweto home on July 18, 1990, Mandela blows out the candles on his 72nd birthday cake. It was the first birthday he celebrated as a free man since the 1960s. Hide Caption 12 of 31 Photos: The evolution of Nelson Mandela The evolution of Nelson Mandela – Mandela and his wife react to supporters during a visit to Brazil at the governor's palace in Rio De Janeiro, on August 1, 1991. Hide Caption 13 of 31 Photos: The evolution of Nelson Mandela The evolution of Nelson Mandela – South African President Frederik de Klerk, right, and Mandela shared a Nobel Peace Prize in 1993 for their work to secure a peaceful transition from apartheid rule. Hide Caption 14 of 31 Photos: The evolution of Nelson Mandela The evolution of Nelson Mandela – Mandela votes for the first time in his life on March 26, 1994. Hide Caption 15 of 31 Photos: The evolution of Nelson Mandela The evolution of Nelson Mandela – On April 27, 1994, a long line of people snake toward a polling station in the black township of Soweto outside of Johannesburg in the nation's first all-race elections. Hide Caption 16 of 31 Photos: The evolution of Nelson Mandela The evolution of Nelson Mandela – Mandela in Mmabatho for an election rally on March 15,</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": -1,
"last_layer_weight": 1.75,
"prior_layers_weight": 0.5,
"kl_div_weight": 1.25,
"kl_temperature": 0.9
}
```
#### quora_pairs
* Dataset: [quora_pairs](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb)
* Size: 675 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 6 tokens</li><li>mean: 13.57 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.43 tokens</li><li>max: 44 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:--------------------------------------------------------------------|:--------------------------------------------------------------|
| <code>Does a transition matrix have to be square?</code> | <code>Does a transition matrix have to be square? Why?</code> |
| <code>What is Triple Talaaq?</code> | <code>How does triple talaq work?</code> |
| <code>What does it mean when your period is three days late?</code> | <code>My period is 5 days late, what do I do?</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": 3,
"last_layer_weight": 0.15,
"prior_layers_weight": 2.5,
"kl_div_weight": 0.75,
"kl_temperature": 0.5
}
```
#### gooaq_pairs
* Dataset: [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 160 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 11.18 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 58.74 tokens</li><li>max: 124 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:--------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>how to connect your airpods to your playstation 4?</code> | <code>['Turn on your PS4.', 'Plug the bluetooth adapter into the USB port at the front of your PS4.', 'Put the adapter into pairing mode — how you do this will depend on what type of adapter you have. ... ', 'Press and hold the pairing button on the back of your AirPod charging case to put it into pairing mode as well.']</code> |
| <code>what is the difference between quickbooks iif and qbo?</code> | <code>QuickBooks accounting software is offered as QuickBooks Desktop (QBD) or QuickBooks Online. ... QBO and IIF format are different: QBO (Web Connect) is to import bank transactions, and IIF is more 'low level' import allowing to create various transactions between QuickBooks accounts.</code> |
| <code>can you see who viewed your whatsapp status?</code> | <code>A view counter is placed at the bottom of your screen, showing you how many people have watched or looked at your status. You can swipe up on the screen to view a list of contact names who have viewed your Status.</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": -1,
"last_layer_weight": 1.75,
"prior_layers_weight": 0.5,
"kl_div_weight": 1.25,
"kl_temperature": 0.9
}
```
#### mrpc_pairs
* Dataset: [mrpc_pairs](https://huggingface.co/datasets/nyu-mll/glue) at [bcdcba7](https://huggingface.co/datasets/nyu-mll/glue/tree/bcdcba79d07bc864c1c254ccfcedcce55bcc9a8c)
* Size: 160 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 11 tokens</li><li>mean: 26.75 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 26.34 tokens</li><li>max: 41 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Mr Annan also warned the US should not use the war on terror as an excuse to suppress " long-cherished freedoms " .</code> | <code>Annan warned that the dangers of extremism after September 11 should not be used as an excuse to suppress " long-cherished " freedoms .</code> |
| <code>Citigroup Inc . C.N , the world 's largest financial services company , on Wednesday promoted Marjorie Magner to chairman and chief executive of its global consumer group .</code> | <code>Citigroup ( C ) on Wednesday named Marjorie Magner chairman and chief executive of its colossal global consumer business .</code> |
| <code>They were among about 40 people attending the traditional Jewish ceremony colored by some non-traditional touches .</code> | <code>He said about 40 people attended the traditional Jewish ceremony colored by some nontraditional touches .</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "MultipleNegativesSymmetricRankingLoss",
"n_layers_per_step": -1,
"last_layer_weight": 0.75,
"prior_layers_weight": 1.25,
"kl_div_weight": 0.8,
"kl_temperature": 0.75
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `learning_rate`: 3e-05
- `weight_decay`: 0.0001
- `num_train_epochs`: 5
- `lr_scheduler_type`: cosine_with_restarts
- `lr_scheduler_kwargs`: {'num_cycles': 3}
- `warmup_ratio`: 0.2
- `save_safetensors`: False
- `fp16`: True
- `push_to_hub`: True
- `hub_model_id`: bobox/DeBERTa-ST-AllLayers-v3.1bis-checkpoints-tmp
- `hub_strategy`: all_checkpoints
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 3e-05
- `weight_decay`: 0.0001
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: cosine_with_restarts
- `lr_scheduler_kwargs`: {'num_cycles': 3}
- `warmup_ratio`: 0.2
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: False
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: True
- `resume_from_checkpoint`: None
- `hub_model_id`: bobox/DeBERTa-ST-AllLayers-v3.1bis-checkpoints-tmp
- `hub_strategy`: all_checkpoints
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | vitaminc-pairs loss | quora pairs loss | qnli-contrastive loss | qasc facts sym loss | xsum-pairs loss | nli-pairs loss | mrpc pairs loss | qasc pairs loss | sciq pairs loss | openbookqa pairs loss | gooaq pairs loss | nq pairs loss | scitail-pairs-qa loss | scitail-pairs-pos loss | msmarco pairs loss | trivia pairs loss | compression-pairs loss | StS-test_spearman_cosine | Vitaminc-test_max_ap | mrpc-test_max_ap |
|:------:|:----:|:-------------:|:-------------------:|:----------------:|:---------------------:|:-------------------:|:---------------:|:--------------:|:---------------:|:---------------:|:---------------:|:---------------------:|:----------------:|:-------------:|:---------------------:|:----------------------:|:------------------:|:-----------------:|:----------------------:|:------------------------:|:--------------------:|:----------------:|
| 0 | 0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0.8972 | 0.5594 | 0.8571 |
| 0.0126 | 65 | 0.4577 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0252 | 130 | 0.4707 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0377 | 195 | 0.5259 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0503 | 260 | 0.5501 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0629 | 325 | 0.5089 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0755 | 390 | 0.4816 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0881 | 455 | 0.5822 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1007 | 520 | 0.5686 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1132 | 585 | 0.5686 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1258 | 650 | 0.517 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1384 | 715 | 0.3615 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1510 | 780 | 0.5978 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1636 | 845 | 0.5153 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1762 | 910 | 0.5059 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1887 | 975 | 0.5624 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2013 | 1040 | 0.5201 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2139 | 1105 | 0.6127 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2265 | 1170 | 0.5333 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2391 | 1235 | 0.494 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2501 | 1292 | - | 5.7698 | 0.2283 | 0.1211 | 0.1645 | 0.3134 | 0.8093 | 0.0461 | 0.1987 | 0.2693 | 1.7182 | 0.4996 | 0.4005 | 0.0755 | 0.3979 | 0.4961 | 0.6545 | 0.0832 | 0.8943 | 0.5651 | 0.8563 |
| 0.2516 | 1300 | 0.6236 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2642 | 1365 | 0.4947 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2768 | 1430 | 0.5595 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2894 | 1495 | 0.641 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3020 | 1560 | 0.5188 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3146 | 1625 | 0.4927 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3271 | 1690 | 0.657 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3397 | 1755 | 0.4665 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3523 | 1820 | 0.4645 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3649 | 1885 | 0.5887 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3775 | 1950 | 0.5308 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3901 | 2015 | 0.536 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4026 | 2080 | 0.4841 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4152 | 2145 | 0.6499 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4278 | 2210 | 0.5982 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4404 | 2275 | 0.5281 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4530 | 2340 | 0.6657 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4655 | 2405 | 0.5746 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4781 | 2470 | 0.5853 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4907 | 2535 | 0.5828 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
### Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.1
- Transformers: 4.42.3
- PyTorch: 2.1.2
- Accelerate: 0.32.1
- Datasets: 2.20.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### AdaptiveLayerLoss
```bibtex
@misc{li20242d,
title={2D Matryoshka Sentence Embeddings},
author={Xianming Li and Zongxi Li and Jing Li and Haoran Xie and Qing Li},
year={2024},
eprint={2402.14776},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
#### GISTEmbedLoss
```bibtex
@misc{solatorio2024gistembed,
title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
author={Aivin V. Solatorio},
year={2024},
eprint={2402.16829},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |