File size: 166,742 Bytes
1c5c923
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
---
language:
- en
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:624583
- loss:CachedGISTEmbedLoss
base_model: BAAI/bge-m3
widget:
- source_sentence: Double Paralympic champion Kadeena Cox has been left out of the
    British Para-cycling performance squad.
  sentences:
  - 'Ten stamps will be on sale on 7 July, marking five decades since the band turned
    professional.

    The collection include the band''s most famous album covers as well as live performance
    shots.

    Pink Floyd became known for its innovative album covers, which were made in collaboration
    with leading graphic designers and photographers.

    The album covers that have been made into stamps include The Piper At The Gates
    Of Dawn, Atom Heart Mother, The Dark Side Of The Moon, Wish You Were Here, Animals
    and The Endless River.

    A further four stamps show the band performing live on tour, including one photograph
    from a concert at London''s UFO Club in 1966.

    Pink Floyd were among the first groups to make extensive use of light shows and
    projection of films for their live concerts, which increased in ambition over
    the decades.

    The band was formed in 1965 by Roger Waters, drummer Nick Mason and keyboardist
    Rick Wright, later joined by guitarist Syd Barrett.

    In 1968, guitarist David Gilmour joined the band shortly before Barrett''s departure.

    The stamps are available to pre-order on the Post Office website and will be physically
    available in 8,000 post offices from 7 July 2016.'
  - 'It said pre-tax profit for the year to the end of March was £593m, compared with
    £735m a year earlier.

    Operating profit at its wholesale gas division fell 94% to just £2.2m, from £36.6m
    a year earlier, as a result of the fall in gas prices.

    Costs relating to its coal-fired power stations rose to £287m in the year.

    In January, SSE cut its standard gas tariff for domestic customers by 5.3%.

    But the UK''s second largest energy company still lost about 300,000 energy customers
    in the year, leaving it with 8.2 million households and businesses.

    SSE chief executive Alistair Phillips-Davies said the energy firm had coped well
    with "the impact of prevailing commodity prices and intense retail market competition".

    "At the same time, SSE has continued to demonstrate financial discipline and commitment
    to its long-term strategic framework. The fact that some of the mist is beginning
    to clear around the legislative, political and regulatory environment means there
    are grounds for some cautious optimism for the next couple of years," he added.

    "SSE continues to invest for the future and in the year ahead plans almost £1.75bn
    of investment into new energy infrastructure in the UK and Ireland and improvements
    in services for our customers,"

    In March, SSE closed its Ferrybridge coal-fired power station in Yorkshire.

    SSE also announced on Wednesday that it would be selling up to a third of its
    50% stake in gas distribution business SGN to raise cash for shareholders or to
    reinvest.'
  - 'The 26-year-old, who won gold medals in both cycling and athletics in Rio last
    year, is instead focusing on training for the World Para-Athletics Championships
    in London this summer.

    Cox had her UK Sport funding suspended in January while she took part in Channel
    4 programme The Jump.

    GB''s 26-strong squad includes Rio gold medallists Sarah Storey and Jody Cundy.

    Storey, 39, became Britain''s most successful female Paralympian when she won
    her 14th gold medal at the Rio Games.

    Cundy, 38, and like Storey a former swimmer, has won seven Paralympic golds -
    four in cycling.

    They are joined in the ''podium squad'' by fellow Paralympic medallists Megan
    Giglia, Karen Darke, Jon-Allan Butterworth, Louis Rolfe, Crystal Lane and David
    Stone.

    With no track events scheduled for 2017 or 2018, British Cycling is happy to allow
    Cox extended time away from the programme.

    It said in a statement: "Kadeena decided to take a break from cycling at the start
    of 2017 to pursue other opportunities afforded to her by her incredible achievements
    at the Paralympics, a decision we fully respect.

    "Her focus is currently on her training programme for the 2017 IPC Athletic World
    Championships in London and she has the full support of the Great Britain cycling
    team."

    Tuesday''s squad announcement comes a fortnight after British Cycling announced
    changes to the Para-cycling pathway in the build-up to Tokyo 2020.

    Riders on the Paralympic world-class programme are now split into two groups -
    podium and podium potential - while a foundation programme has also been established.

    Great Britain 2017 squad in full:

    Podium: James Ball, Steve Bate, Jon-Allan Butterworth, Jody Cundy, Karen Darke,
    Adam Duggleby, Lora Fachie, Neil Fachie, Megan Giglia, Jon Gildea, Corrine Hall,
    Crystal Lane, Craig Maclean, Pete Mitchell, Louis Rolfe, Matt Rotherham, Helen
    Scott, David Stone, Dame Sarah Storey, Sophie Thornhill.

    Podium Potential: Will Bjergfelt, Craig McCann, Mel Nicholls, Simon Price, Liz
    Saul, David Smith.'
- source_sentence: A clean kitchen with the windows white and open.
  sentences:
  - 'Spacious white kitchen with brown cabinetry, sink and appliances. '
  - People are in the house.
  - Cramped black kitchen with white cabinetry, sink and appliances.
- source_sentence: what is the full form of ms dos
  sentences:
  - '89th Academy Awards Moonlight won three awards including Best Picture and La
    La Land won the most awards of the ceremony with six after receiving a record-tying
    14 nominations. In an event unprecedented in the history of the Oscars, La La
    Land was incorrectly announced as the Best Picture. After a few minutes the error
    was corrected and Moonlight was declared the winner.[8][9] Moonlight became the
    first film with an all-black cast and the first LGBT-themed film to win Best Picture.[10][11]
    Hacksaw Ridge and Manchester by the Sea won two awards each. Winners with one
    award include Arrival, Fantastic Beasts and Where to Find Them, Fences, The Jungle
    Book, O.J.: Made in America, Piper, The Salesman, Sing, Suicide Squad, The White
    Helmets, and Zootopia.'
  - MS-DOS MS-DOS (/ˌɛmˌɛsˈdɒs/ em-ess-DOSS; acronym for Microsoft Disk Operating
    System) is an operating system for x86-based personal computers mostly developed
    by Microsoft. Collectively, MS-DOS, its rebranding as IBM PC DOS, and some operating
    systems attempting to be compatible with MS-DOS, are sometimes referred to as
    "DOS" (which is also the generic acronym for disk operating system). MS-DOS was
    the main operating system for IBM PC compatible personal computers during the
    1980s and the early 1990s, when it was gradually superseded by operating systems
    offering a graphical user interface (GUI), in various generations of the graphical
    Microsoft Windows operating system.
  - Vincent and the Doctor "Vincent and the Doctor" is the tenth episode in the fifth
    series of British science fiction television series Doctor Who, first broadcast
    on BBC One on 5 June 2010. It was written by Richard Curtis and directed by Jonny
    Campbell and featured an uncredited guest appearance from actor Bill Nighy.
- source_sentence: who does the voice for yoda in the starwars films
  sentences:
  - List of backward compatible games for Xbox One During Microsoft's E3 2015 press
    conference on June 15, 2015, Microsoft announced plans to introduce Xbox 360 backward
    compatibility on the Xbox One at no additional cost.[10] Supported Xbox 360 games
    will run within an emulator and have access to certain Xbox One features, such
    as recording and broadcasting gameplay.[11] Games do not run directly from discs.
    A relicensed form of the game is downloaded automatically when a supported game
    is inserted, instead of having to make extensive modifications to the game in-order
    to port the original title. This means, that the only reason every single Xbox
    360 title is not available, is a judicial issue, not an engineering one. All Xbox
    360 games could run out-of-the-box on Xbox One, as they require no modifications
    or porting to run, other than a valid license. While digitally-purchased games
    will automatically appear for download in the user's library once available.[10]
    As with Xbox One titles,[12] if the game is installed using physical media, the
    disc is still required for validation purposes.[10][11]
  - Frank Oz Frank Oz (born Frank Richard Oznowicz[2] on May 25, 1944) is an English-born
    American puppeteer, filmmaker and actor. His career began as a puppeteer, where
    he performed the Muppet characters of Miss Piggy, Fozzie Bear, Animal, and Sam
    Eagle in The Muppet Show, and Cookie Monster, Bert, and Grover in Sesame Street.[4]
    He is also known for being the puppeteer and voice of Yoda in the Star Wars films.
  - Battle of Barnet The Battle of Barnet was a decisive engagement in the Wars of
    the Roses, a dynastic conflict of 15th-century England. The military action, along
    with the subsequent Battle of Tewkesbury, secured the throne for Edward IV. On
    14 April 1471 near Barnet, then a small Hertfordshire town north of London, Edward
    led the House of York in a fight against the House of Lancaster, which backed
    Henry VI for the throne. Leading the Lancastrian army was Richard Neville, 16th
    Earl of Warwick, who played a crucial role in the fate of each king. Historians
    regard the battle as one of the most important clashes in the Wars of the Roses,
    since it brought about a decisive turn in the fortunes of the two houses. Edward's
    victory was followed by 14 years of Yorkist rule over England.
- source_sentence: In mathematical astronomy , his fame is due to the introduction
    of the astronomical globe , and his early contributions to understanding the movement
    of the planets .
  sentences:
  - In 1994 , Rodrigo Leão left the band to start a solo career , replaced by Carlos
    Maria Trindade ( keyboard synthesizer ) .
  - His fame is due in mathematical astronomy to the introduction of the astronomical
    globe and to his early contributions to the understanding of the movement of the
    planets .
  - The Keita dynasty ruled Mali from the 12th to the early 17th century , pre-imperial
    and imperial .
datasets:
- bobox/enhanced_NLI-50K
- sentence-transformers/natural-questions
- tals/vitaminc
- bobox/xSum-processed
- google-research-datasets/paws
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- cosine_mcc
model-index:
- name: SentenceTransformer based on BAAI/bge-m3
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test
      type: sts-test
    metrics:
    - type: pearson_cosine
      value: 0.9033761016886019
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.9159521259386664
      name: Spearman Cosine
  - task:
      type: binary-classification
      name: Binary Classification
    dataset:
      name: allNLI dev
      type: allNLI-dev
    metrics:
    - type: cosine_accuracy
      value: 0.7734375
      name: Cosine Accuracy
    - type: cosine_accuracy_threshold
      value: 0.716580331325531
      name: Cosine Accuracy Threshold
    - type: cosine_f1
      value: 0.6964285714285715
      name: Cosine F1
    - type: cosine_f1_threshold
      value: 0.6203938126564026
      name: Cosine F1 Threshold
    - type: cosine_precision
      value: 0.5652173913043478
      name: Cosine Precision
    - type: cosine_recall
      value: 0.9069767441860465
      name: Cosine Recall
    - type: cosine_ap
      value: 0.669835314309871
      name: Cosine Ap
    - type: cosine_mcc
      value: 0.5249655273153817
      name: Cosine Mcc
  - task:
      type: binary-classification
      name: Binary Classification
    dataset:
      name: Qnli dev
      type: Qnli-dev
    metrics:
    - type: cosine_accuracy
      value: 0.7109375
      name: Cosine Accuracy
    - type: cosine_accuracy_threshold
      value: 0.7116010189056396
      name: Cosine Accuracy Threshold
    - type: cosine_f1
      value: 0.7092198581560283
      name: Cosine F1
    - type: cosine_f1_threshold
      value: 0.5781652927398682
      name: Cosine F1 Threshold
    - type: cosine_precision
      value: 0.6097560975609756
      name: Cosine Precision
    - type: cosine_recall
      value: 0.847457627118644
      name: Cosine Recall
    - type: cosine_ap
      value: 0.7346738886839252
      name: Cosine Ap
    - type: cosine_mcc
      value: 0.3986067385792586
      name: Cosine Mcc
---

# SentenceTransformer based on BAAI/bge-m3

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) on the [NLI](https://huggingface.co/datasets/bobox/enhanced_NLI-50K), [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions), [vitaminc](https://huggingface.co/datasets/tals/vitaminc), [xsum](https://huggingface.co/datasets/bobox/xSum-processed), [paws](https://huggingface.co/datasets/google-research-datasets/paws) and global_dataset datasets. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision 5617a9f61b028005a4858fdac845db406aefb181 -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Datasets:**
    - [NLI](https://huggingface.co/datasets/bobox/enhanced_NLI-50K)
    - [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions)
    - [vitaminc](https://huggingface.co/datasets/tals/vitaminc)
    - [xsum](https://huggingface.co/datasets/bobox/xSum-processed)
    - [paws](https://huggingface.co/datasets/google-research-datasets/paws)
    - global_dataset
- **Language:** en
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): AdvancedWeightedPooling(
    (mha): MultiheadAttention(
      (out_proj): NonDynamicallyQuantizableLinear(in_features=1024, out_features=1024, bias=True)
    )
    (MLP): Sequential(
      (0): SwiGLUBlock(
        (in_proj_swish): Linear(in_features=1024, out_features=2048, bias=True)
        (in_proj_gate): Linear(in_features=1024, out_features=2048, bias=True)
      )
      (1): Dropout(p=0.05, inplace=False)
      (2): Linear(in_features=2048, out_features=1024, bias=True)
    )
    (layernorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
  )
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("bobox/XLMRoBERTaM3-CustomPoolin-v1.02-1024dMLP-s1-checkpoints-tmp")
# Run inference
sentences = [
    'In mathematical astronomy , his fame is due to the introduction of the astronomical globe , and his early contributions to understanding the movement of the planets .',
    'His fame is due in mathematical astronomy to the introduction of the astronomical globe and to his early contributions to the understanding of the movement of the planets .',
    'In 1994 , Rodrigo Leão left the band to start a solo career , replaced by Carlos Maria Trindade ( keyboard synthesizer ) .',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity

* Dataset: `sts-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value     |
|:--------------------|:----------|
| pearson_cosine      | 0.9034    |
| **spearman_cosine** | **0.916** |

#### Binary Classification

* Datasets: `allNLI-dev` and `Qnli-dev`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)

| Metric                    | allNLI-dev | Qnli-dev   |
|:--------------------------|:-----------|:-----------|
| cosine_accuracy           | 0.7734     | 0.7109     |
| cosine_accuracy_threshold | 0.7166     | 0.7116     |
| cosine_f1                 | 0.6964     | 0.7092     |
| cosine_f1_threshold       | 0.6204     | 0.5782     |
| cosine_precision          | 0.5652     | 0.6098     |
| cosine_recall             | 0.907      | 0.8475     |
| **cosine_ap**             | **0.6698** | **0.7347** |
| cosine_mcc                | 0.525      | 0.3986     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Datasets
<details><summary>NLI</summary>

#### NLI

* Dataset: [NLI](https://huggingface.co/datasets/bobox/enhanced_NLI-50K) at [d43e6fe](https://huggingface.co/datasets/bobox/enhanced_NLI-50K/tree/d43e6fe7f1e171f916502c123235d4b9ec997cb4)
* Size: 750 training samples
* Columns: <code>anchor</code>, <code>entailment</code>, and <code>negative</code>
* Approximate statistics based on the first 750 samples:
  |         | anchor                                                                            | entailment                                                                       | negative                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                           | string                                                                            |
  | details | <ul><li>min: 5 tokens</li><li>mean: 24.9 tokens</li><li>max: 176 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 16.4 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.53 tokens</li><li>max: 49 tokens</li></ul> |
* Samples:
  | anchor                                                                                                                                                    | entailment                                                        | negative                                                           |
  |:----------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------|:-------------------------------------------------------------------|
  | <code>09:00 On Thursday, AT&T said they have teamed with Juniper Networks to develop a mobile security platform for both businesses and consumers.</code> | <code>AT&T and Juniper to develop mobile security platform</code> | <code>AT&T and Juniper disassemble mobile security platform</code> |
  | <code>two police motorcycles driving down the road in front of a cop car</code>                                                                           | <code>Two motorcycle cops and a police car on a street. </code>   | <code>No motorcycle cops and a police car on a street.</code>      |
  | <code>I've told you about their size.</code>                                                                                                              | <code>I have told you about their size.</code>                    | <code>I have not told you about their size.</code>                 |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.02}
  ```
</details>
<details><summary>natural-questions</summary>

#### natural-questions

* Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 750 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 750 samples:
  |         | sentence1                                                                          | sentence2                                                                            |
  |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                               |
  | details | <ul><li>min: 10 tokens</li><li>mean: 13.32 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 148.26 tokens</li><li>max: 651 tokens</li></ul> |
* Samples:
  | sentence1                                                           | sentence2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
  |:--------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>who is winner in bigg boss season 5 kannada</code>            | <code>Bigg Boss Kannada 5 Bigg Boss Kannada 5 (BBK5) was the fifth season of the Kannada television series Bigg Boss Kannada, that premiered on 15 October 2017.[1] Sudeep reprised his role as the host of the show.[2] The finale of the season took place 28 January 2018, and rapper Chandan Shetty was declared the winner of the show and the prize money of ₹50 lakh. Sales representative Diwaker was voted the runner-up.[3]</code>                                                                                                                                                                                                                                                                                                   |
  | <code>what side of the street do they drive on in sweden</code>     | <code>Left- and right-hand traffic Sweden was LHT from about 1734 to 1967,[17] despite having land borders with RHT countries, and approximately 90 percent of cars being left-hand drive (LHD) vehicles.[18] A referendum was held in 1955, with an overwhelming majority voting against a change to RHT. Nevertheless, some years later the government ordered a conversion, which took place at 5 am on Sunday, 3 September 1967. The accident rate dropped sharply after the change,[19] but soon rose back to near its original level.[20] The day was known as Dagen H ("H-Day"), the 'H' being for Högertrafik or right traffic. When Iceland switched the following year, it was known as H-dagurinn, again meaning "H-Day".[21]</code> |
  | <code>what is the difference between mandelbrot and biscotti</code> | <code>Mandelbrot (cookie) Its precise origin is unknown, as is its historic relationship with biscotti, a similar Italian cookie. While mandelbrot and biscotti both have a crunchy exterior, mandelbrot is slightly softer than biscotti due to its higher oil and/or butter content.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.02}
  ```
</details>
<details><summary>vitaminc</summary>

#### vitaminc

* Dataset: [vitaminc](https://huggingface.co/datasets/tals/vitaminc) at [be6febb](https://huggingface.co/datasets/tals/vitaminc/tree/be6febb761b0b2807687e61e0b5282e459df2fa0)
* Size: 370,653 training samples
* Columns: <code>claim</code> and <code>evidence</code>
* Approximate statistics based on the first 1000 samples:
  |         | claim                                                                             | evidence                                                                           |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             |
  | details | <ul><li>min: 9 tokens</li><li>mean: 20.44 tokens</li><li>max: 73 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 44.61 tokens</li><li>max: 191 tokens</li></ul> |
* Samples:
  | claim                                                                 | evidence                                                                                                                                      |
  |:----------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>The Script is a pop band .</code>                               | <code>The Script are an Irish pop band formed in 2007 in Dublin , Ireland .</code>                                                            |
  | <code>Scott Skiles scored fewer than 55 points in home games .</code> | <code>He set several records during high school , including most points in a home game ( 53 ) and most points in an away game ( 56 ) .</code> |
  | <code>The Black Cauldron was released before July 25 , 1985 .</code>  | <code>The film was distributed theatrically through Buena Vista Distribution on July 24 , 1985 .</code>                                       |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.02}
  ```
</details>
<details><summary>xsum</summary>

#### xsum

* Dataset: [xsum](https://huggingface.co/datasets/bobox/xSum-processed) at [044020f](https://huggingface.co/datasets/bobox/xSum-processed/tree/044020f516c1830da392e567474cd5452971366f)
* Size: 131,779 training samples
* Columns: <code>summary</code> and <code>document</code>
* Approximate statistics based on the first 1000 samples:
  |         | summary                                                                            | document                                                                             |
  |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                               |
  | details | <ul><li>min: 11 tokens</li><li>mean: 30.72 tokens</li><li>max: 62 tokens</li></ul> | <ul><li>min: 63 tokens</li><li>mean: 311.14 tokens</li><li>max: 550 tokens</li></ul> |
* Samples:
  | summary                                                                                                                                   | document                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
  |:------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>The amount of time spent needing daily care in late life has doubled in England over the past two decades, a study suggests.</code> | <code>The Newcastle University study found men spent 2.4 years on average needing regular care and women three years.<br>This includes everything from help with washing and dressing each day to round-the-clock care.<br>Researchers said it suggested there needed to be a sharp increase in the number of care home places to cope.<br>It comes as ministers consider a new way to fund the system.<br>The government has promised major reform amid reports that councils are struggling to provide enough support to cope with the ageing population.<br>The latest research, published in the Lancet, looked at not just the growth in the numbers of older people but also how many of those years were spent needing daily care.<br>Between 1991 and 2011, life expectancy increased by more than four years for both men and women to 82.6 and 85.6 respectively.<br>But the number of those years spent with substantial care needs rose much more rapidly, from 1.1 to 2.4 for men and 1.6 to three for women.<br>Looking ahead to 2025, it means there wi...</code> |
  | <code>A man has admitted sexually assaulting two women in the same street two months apart.</code>                                        | <code>Craig Perkins had initially denied being involved in the attacks in Bournemouth's Boundary Road in September and December of last year.<br>But on Wednesday at Bournemouth Crown Court he pleaded guilty to two counts of sexual assault.<br>The 29-year-old, of Victoria Park Road, Bournemouth, has been remanded in custody and will be sentenced on 5 May.<br>Police said the victims were both in their 20s - the first was assaulted on Tuesday 13 September and the second attack happened on Thursday 24 November.<br>Perkins was arrested on 14 December.<br>Det Ch Insp Sarah Derbyshire, of Dorset Police's major crime investigation team, said: "Stranger sex attacks such as these are very rare in Dorset and we are committed toward investigating them thoroughly and bringing the offender to justice.<br>"The victims in this case have been updated about Perkins' guilty pleas and I would like to pay tribute to them for having the confidence to report these offences to Dorset Police and the assistance they have given to the ...</code>       |
  | <code>Durham produced a below-par batting display as they lost by seven wickets to Worcestershire in the One-Day Cup.</code>              | <code>A 22 overs-a-side game was all that was possible after a long rain delay, but the home side were bowled out for 90.<br>Mark Stoneman top-scored with 29 and the only other batsman to reach double figures was Paul Collingwood (17).<br>Chris Rushworth took 3-19 as the visitors began their reply, but Alexei Kervezee (37) and Brett D'Oliveira (20) saw them to 91-3 with 17 balls in hand.<br>Their unbroken partnership was worth 60 after Kervezee collected the winning single from the bowling of Usman Arshad.<br>Durham reached 35-1 at the start of their innings after play got under way at 15:30 BST, but then lost four wickets for 11 runs.<br>D'Oliveira, Ed Barnard, Joe Leach and Chris Russell took two wickets each as they were finally dismissed at the start of the 22nd over.<br>Durham's total was their seventh-lowest in non-Twenty20 limited-overs matches games.<br>Rushworth exploited the conditions superbly at the start of Worcestershire's innings, but once he was out of the attack, Kervezee and D'Oliveira were abl...</code>    |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.02}
  ```
</details>
<details><summary>paws</summary>

#### paws

* Dataset: [paws](https://huggingface.co/datasets/google-research-datasets/paws) at [161ece9](https://huggingface.co/datasets/google-research-datasets/paws/tree/161ece9501cf0a11f3e48bd356eaa82de46d6a09)
* Size: 49,401 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                          | sentence2                                                                          |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             |
  | details | <ul><li>min: 12 tokens</li><li>mean: 30.94 tokens</li><li>max: 56 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 30.97 tokens</li><li>max: 55 tokens</li></ul> |
* Samples:
  | sentence1                                                                                                                                                             | sentence2                                                                                                                                                      |
  |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Charley Frazier ( born August 12 , 1939 in Houston , Texas ) is a former American Football Wide Receiver from the NFL and the American Football League .</code> | <code>Charley Frazier ( born August 12 , 1939 in Houston , Texas ) is a former American football receiver in the American Football League and the NFL .</code> |
  | <code>Indonesian dumplings were influenced and brought by Chinese immigrants to Indonesia .</code>                                                                    | <code>Indonesian dumplings were influenced and brought to Indonesia by Chinese immigrants .</code>                                                             |
  | <code>The SSSI has an area of 190.3 hectares , while the SAC has 168.3 hectares .</code>                                                                              | <code>The SSSI has an area of 190.3 hectares while the SAC covers 168.3 hectares .</code>                                                                      |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.02}
  ```
</details>
<details><summary>global_dataset</summary>

#### global_dataset

* Dataset: global_dataset
* Size: 71,250 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                          | sentence2                                                                           |
  |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                              |
  | details | <ul><li>min: 7 tokens</li><li>mean: 24.45 tokens</li><li>max: 115 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 106.19 tokens</li><li>max: 564 tokens</li></ul> |
* Samples:
  | sentence1                                                                                                                                                   | sentence2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
  |:------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Taobao is a Chinese online shopping site similar to eBay , Amazon and Rakuten , which is operated by Alibaba Group in Hangzhou , Zhejiang .</code>    | <code>Taobao is a Chinese online shopping website similar to eBay , Amazon and Rakuten , which is operated in Hangzhou , Zhejiang by Alibaba Group .</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
  | <code>Because of the lack of wood , boats were bundled with made papyrus reeds .</code>                                                                     | <code>Because of the lack of wood , boats with papyrus reeds were bundled .</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
  | <code>New Zealand leg-spinner Ish Sodhi hopes his stint playing in Nottinghamshire's T20 campaign this summer will lead to a longer stay in England.</code> | <code>The 24-year-old has played 41 international matches in all formats.<br>He has been particularly effective in T20, with 21 wickets at 14.47 and a strike-rate of a wicket every 13 balls.<br>"In the last year or so I have definitely been a lot more successful in the T20 stuff than in the other stuff," he told BBC Radio Nottingham.<br>"But in the last six months I have been finding my way in the four-stuff and one-dayers.<br>"In the future I would love to come over and play all the forms. At this stage the T20 is the main focus. It is still a wee, wee way away but I will continue to look to hone my T20 skills and try to be in tip-top condition when I come over."<br>Sodhi says playing in England is a "great opportunity" with the 2019 World Cup in mind.<br>"It's great to play at these grounds where I will potentially play a World Cup, which I am targeting," he said.<br>"It will be great to get used to conditions. The opportunity came up and I will try to grab it with both hands."<br>Sodhi will be the second of two ...</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.02}
  ```
</details>

### Evaluation Datasets
<details><summary>NLI</summary>

#### NLI

* Dataset: [NLI](https://huggingface.co/datasets/bobox/enhanced_NLI-50K) at [d43e6fe](https://huggingface.co/datasets/bobox/enhanced_NLI-50K/tree/d43e6fe7f1e171f916502c123235d4b9ec997cb4)
* Size: 85 evaluation samples
* Columns: <code>anchor</code>, <code>entailment</code>, and <code>negative</code>
* Approximate statistics based on the first 85 samples:
  |         | anchor                                                                            | entailment                                                                        | negative                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | string                                                                            |
  | details | <ul><li>min: 9 tokens</li><li>mean: 17.02 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.96 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.53 tokens</li><li>max: 26 tokens</li></ul> |
* Samples:
  | anchor                                                       | entailment                                                            | negative                                                              |
  |:-------------------------------------------------------------|:----------------------------------------------------------------------|:----------------------------------------------------------------------|
  | <code>The girls walk down the street.</code>                 | <code>Girls walk down the street.</code>                              | <code>Girls do not walk down the street.</code>                       |
  | <code>Two computers sitting on top of a desk.</code>         | <code>A laptop computer and a desktop computer on a white desk</code> | <code>A laptop computer and a desktop computer on a black desk</code> |
  | <code>A bathroom with a toilette with it's seat down.</code> | <code>A bathroom with a sink and a toilet</code>                      | <code>A bathroom without a sink or a toilet</code>                    |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.02}
  ```
</details>
<details><summary>natural-questions</summary>

#### natural-questions

* Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 113 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 113 samples:
  |         | sentence1                                                                          | sentence2                                                                            |
  |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                               |
  | details | <ul><li>min: 10 tokens</li><li>mean: 13.57 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 34 tokens</li><li>mean: 176.3 tokens</li><li>max: 2497 tokens</li></ul> |
* Samples:
  | sentence1                                                          | sentence2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
  |:-------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>kiss him not me where does the anime end in the manga</code> | <code>Kiss Him, Not Me Kiss Him, Not Me, known in Japan as Watashi ga Motete Dōsunda (Japanese: 私がモテてどうすんだ, Hepburn: lit. What's the Point of Me Getting Popular?), is a Japanese romantic comedy shōjo manga series written and illustrated by Junko.[2] It is published by Kodansha since 2013 on Bessatsu Friend magazine.[3] Twelve volumes compiling the chapters have been released so far.[2] It is published online in English by Crunchyroll and the volumes will be published by Kodansha USA.[3] An audio drama adaptation of the first chapter was released on January 13, 2015.[4] An anime adaptation by Brain's Base aired in Japan between October and December 2016.[5][6] The manga won Best Shōjo Manga at the 40th Kodansha Manga Awards.</code> |
  | <code>who sings i just want to use your love</code>                | <code>Your Love (The Outfield song) "Your Love" is a song by the English rock band the Outfield, taken from their debut album Play Deep (1985). The song was penned by the band's guitarist John Spinks.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
  | <code>how many episodes of westworld are in season 1</code>        | <code>Westworld (season 1) The first season of the American science fiction western television series Westworld (subtitled The Maze) premiered on HBO on October 2, 2016, and concluded on December 4, 2016. It consisted of ten episodes, each running approximately 60 minutes in length and was broadcast on Sundays in the United States. The complete first season was released on home media on November 7, 2017.</code>                                                                                                                                                                                                                                                                                                                                       |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.02}
  ```
</details>
<details><summary>vitaminc</summary>

#### vitaminc

* Dataset: [vitaminc](https://huggingface.co/datasets/tals/vitaminc) at [be6febb](https://huggingface.co/datasets/tals/vitaminc/tree/be6febb761b0b2807687e61e0b5282e459df2fa0)
* Size: 63,054 evaluation samples
* Columns: <code>claim</code> and <code>evidence</code>
* Approximate statistics based on the first 1000 samples:
  |         | claim                                                                              | evidence                                                                           |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             |
  | details | <ul><li>min: 10 tokens</li><li>mean: 22.35 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 37.94 tokens</li><li>max: 75 tokens</li></ul> |
* Samples:
  | claim                                                                                                              | evidence                                                                                                                                                                                                                                                         |
  |:-------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>More than 273 people have died from the 2019-20 coronavirus outside mainland China .</code>                  | <code>More than 3,200 people have died : almost 3,000 in mainland China and around 275 in other countries .</code>                                                                                                                                               |
  | <code>More than 146,500 people have been infected with coronavirus globally , during the 2019�20 pandemic .</code> | <code>more than 147,000 cases have been confirmed worldwide .</code>                                                                                                                                                                                             |
  | <code>Over 278,000 coronavirus cases had been confirmed around the world by March 21 , 2020 .</code>               | <code>As of 21 March , more than 278,000 cases of COVID-19 have been reported in over 186 countries and territories , resulting in more than 11,500 deaths and 92,000 recoveries.  virus seems to mostly spread between people via respiratory droplets .</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.02}
  ```
</details>
<details><summary>xsum</summary>

#### xsum

* Dataset: [xsum](https://huggingface.co/datasets/bobox/xSum-processed) at [044020f](https://huggingface.co/datasets/bobox/xSum-processed/tree/044020f516c1830da392e567474cd5452971366f)
* Size: 131,779 evaluation samples
* Columns: <code>summary</code> and <code>document</code>
* Approximate statistics based on the first 1000 samples:
  |         | summary                                                                            | document                                                                             |
  |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                               |
  | details | <ul><li>min: 17 tokens</li><li>mean: 30.71 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>min: 70 tokens</li><li>mean: 305.77 tokens</li><li>max: 543 tokens</li></ul> |
* Samples:
  | summary                                                                                                                                                       | document                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
  |:--------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>A new species of moss has been found growing on 10 maple trees in a Carmarthenshire car park, but experts are in two minds about its origins.</code>    | <code>Welsh Bristle-moss was discovered near Dryslwyn Castle, close to Llandeilo, by the Countryside Council for Wales.<br>It said it might have evolved from a genetically similar moss.<br>But it could be an undiscovered species that was imported from the Continent on maples used to landscape the car park in the 1990s.<br>There are about 900 species of moss in Britain and 587 of those are found in Wales.<br>The Welsh Bristle-moss was discovered during a survey which is recording mosses growing on trees in south Wales.<br>Experts said the moss had a unique combination of distinctive traits. It differed from related mosses because of its round-tipped leaf tips and flat leaf edges.<br>Countryside Council for Wales (CCW) moss ecologist Sam Bosanquet, who made the new find, said: "Welsh Bristle-moss highlights the need to be ever vigilant and open-minded, even when looking at plants in mundane places like car parks.<br>"This is a high-point in our regular work of recording mosses which grow on trees in south Wales.<br>"...</code> |
  | <code>A former Soviet army officer has been convicted by a US jury of planning and leading a Taliban attack on American forces in Afghanistan in 2009.</code> | <code>The jury found Irek Hamidullin guilty on 15 counts, including supporting terrorists and conspiracy to use a weapon of mass destruction.<br>The 55-year-old is the first military prisoner from Afghanistan to be tried in a US federal court.<br>Some of the charges carry a mandatory life sentence.<br>About 30 insurgents died in the attack, with Hamidullin the only survivor, while no American or Afghan soldiers were killed.<br>Hamidullin, who did not testify during the trial, is expected to be sentenced on 6 November.<br>Lawyers say it is unusual for someone captured on the battlefield in Afghanistan to be transferred to the United States for trial in a federal court.<br>Hamidullin's defence lawyers had tried unsuccessfully to have the charges dismissed, saying their client was a prisoner of war and ineligible for trial in civilian court.<br>Prosecutors argued federal law protected US soldiers no matter where they were.<br>The jury in Richmond. Virginia, reached its verdict after five days of testimony and eight ho...</code> |
  | <code>UK troops could be deployed to train moderate Syrian rebels in the fight against Islamic State militants (IS), the defence secretary has said.</code>   | <code>Michael Fallon told BBC News that UK troops could be sent to a country neighbouring Syria, possibly Jordan.<br>He insisted however that UK forces would not engage in direct combat.<br>The US is leading efforts to train a Syrian opposition to fight IS, also known as ISIS, which has captured large parts of of the country.<br>The country's National Security Adviser Susan Rice said a deal had been reached with Turkey to allow the US to train Syrian rebels on its soil, although this has been denied by Turkish officials.<br>Mr Fallon discussed the possibility of launching training operations, while visiting the Royal Fleet Auxiliary Ship, Argus, in Falmouth.<br>A specialist team of 12 soldiers from the Yorkshire Regiment is already training Kurdish fighters in Iraq to use UK-supplied heavy machine guns.<br>And the UK is to fund bomb disposal training for the Kurdish Peshmerga forces to counter the threat of Improvised Explosive Devices (IEDs), Foreign Secretary Philip Hammond announced on Monday.<br>The Prime Mi...</code>    |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.02}
  ```
</details>
<details><summary>paws</summary>

#### paws

* Dataset: [paws](https://huggingface.co/datasets/google-research-datasets/paws) at [161ece9](https://huggingface.co/datasets/google-research-datasets/paws/tree/161ece9501cf0a11f3e48bd356eaa82de46d6a09)
* Size: 8,000 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                          | sentence2                                                                          |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             |
  | details | <ul><li>min: 11 tokens</li><li>mean: 31.67 tokens</li><li>max: 56 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 31.33 tokens</li><li>max: 54 tokens</li></ul> |
* Samples:
  | sentence1                                                                                                                                     | sentence2                                                                                                                               |
  |:----------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------|
  | <code>He also wrote a large number of vocal arrangements and orchestral accompaniments to varieties .</code>                                  | <code>He also wrote a large number of vocal arrangements and orchestral accompaniments for varieties .</code>                           |
  | <code>In 1994 , Rodrigo Leão left the band to start a solo career , being replaced by Carlos Maria Trindade ( keyboard synthesizer ) .</code> | <code>In 1994 , Rodrigo Leão left the band to start a solo career , replaced by Carlos Maria Trindade ( keyboard synthesizer ) .</code> |
  | <code>Until 1951 , he was active as a socialist in post-war legislation when he decided to focus on local politics .</code>                   | <code>He was active as a socialist in the post-war legislature until 1951 , when he decided to focus on local politics .</code>         |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.02}
  ```
</details>
<details><summary>global_dataset</summary>

#### global_dataset

* Dataset: global_dataset
* Size: 256 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 256 samples:
  |         | sentence1                                                                          | sentence2                                                                           |
  |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                              |
  | details | <ul><li>min: 10 tokens</li><li>mean: 23.68 tokens</li><li>max: 51 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 112.38 tokens</li><li>max: 511 tokens</li></ul> |
* Samples:
  | sentence1                                                                                                                                                                   | sentence2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
  |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>All babies born from Tuesday across the UK will have an anti-hepatitis B injection added to the other routine vaccinations they are given in their early life.</code> | <code>The jab protects against viral infections that cause cirrhosis and liver cancer.<br>Babies are already vaccinated against diphtheria, tetanus, whooping cough, Hib and polio.<br>Public Health England said the new vaccine had been "shown to be safe".<br>Babies are currently given vaccinations when they are eight, 12 and 16 weeks old and the new injection will be given at the same time as the others.<br>Previously, the hepatitis B vaccine was available on the NHS as a separate jab and was only administered to infants considered at risk, such as those born to infected mothers.<br>While hepatitis B rates in the UK are generally very low, in some inner city areas up to 1% of antenatal women are infected.<br>The infection has no symptoms so many of these women will be unaware they are ill, while their babies are considered at high risk.<br>Mary Ramsay, head of immunisation at Public Health England, said: "The Hexavalent vaccine has been extensively tested and shown to be safe and is widely used internationally wi...</code> |
  | <code>A black man in a long sleeves white collared shirt and a tie is walking to work in a big city.</code>                                                                 | <code>The man is wearing work attire and is walking to his job.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
  | <code>ACVM is based in Glasgow and has offices in Edinburgh , Aberdeen , Newcastle , Manchester and Milton Keynes .</code>                                                  | <code>ACVM is based in Glasgow and has subsidiaries in Edinburgh , Aberdeen , Newcastle , Manchester and Milton Keynes .</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.02}
  ```
</details>

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 192
- `per_device_eval_batch_size`: 256
- `learning_rate`: 0.0001
- `weight_decay`: 0.001
- `lr_scheduler_type`: cosine_with_min_lr
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 3.3333333333333335e-05}
- `warmup_ratio`: 0.15
- `save_safetensors`: False
- `fp16`: True
- `remove_unused_columns`: False
- `push_to_hub`: True
- `hub_model_id`: bobox/XLMRoBERTaM3-CustomPoolin-v1.02-1024dMLP-s1-checkpoints-tmp
- `hub_strategy`: all_checkpoints
- `hub_private_repo`: False
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 192
- `per_device_eval_batch_size`: 256
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 0.0001
- `weight_decay`: 0.001
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 3
- `max_steps`: -1
- `lr_scheduler_type`: cosine_with_min_lr
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 3.3333333333333335e-05}
- `warmup_ratio`: 0.15
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: False
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: False
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `tp_size`: 0
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: True
- `resume_from_checkpoint`: None
- `hub_model_id`: bobox/XLMRoBERTaM3-CustomPoolin-v1.02-1024dMLP-s1-checkpoints-tmp
- `hub_strategy`: all_checkpoints
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
<details><summary>Click to expand</summary>

| Epoch  | Step | Training Loss | NLI loss | natural-questions loss | vitaminc loss | xsum loss | paws loss | global dataset loss | sts-test_spearman_cosine | allNLI-dev_cosine_ap | Qnli-dev_cosine_ap |
|:------:|:----:|:-------------:|:--------:|:----------------------:|:-------------:|:---------:|:---------:|:-------------------:|:------------------------:|:--------------------:|:------------------:|
| 0.0026 | 1    | 0.7912        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.0051 | 2    | 3.5781        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.0077 | 3    | 0.8711        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.0102 | 4    | 0.9923        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.0128 | 5    | 0.6723        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.0153 | 6    | 1.0542        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.0179 | 7    | 0.8721        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.0204 | 8    | 0.8121        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.0230 | 9    | 0.9226        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.0255 | 10   | 0.7534        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.0281 | 11   | 0.9769        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.0306 | 12   | 1.1295        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.0332 | 13   | 0.9773        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.0357 | 14   | 0.7239        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.0383 | 15   | 0.6364        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.0408 | 16   | 0.7573        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.0434 | 17   | 0.7629        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.0459 | 18   | 0.8665        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.0485 | 19   | 0.6049        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.0510 | 20   | 0.6587        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.0536 | 21   | 0.5717        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.0561 | 22   | 0.4781        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.0587 | 23   | 0.4699        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.0612 | 24   | 1.7145        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.0638 | 25   | 0.531         | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.0663 | 26   | 0.5584        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.0689 | 27   | 0.398         | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.0714 | 28   | 0.5015        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.0740 | 29   | 0.4741        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.0765 | 30   | 0.3762        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.0791 | 31   | 0.6952        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.0816 | 32   | 0.2723        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.0842 | 33   | 0.4301        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.0867 | 34   | 0.3839        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.0893 | 35   | 0.3154        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.0918 | 36   | 0.2796        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.0944 | 37   | 0.2964        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.0969 | 38   | 0.2232        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.0995 | 39   | 0.2661        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.1020 | 40   | 0.3133        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.1046 | 41   | 0.2047        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.1071 | 42   | 0.2206        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.1097 | 43   | 0.1694        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.1122 | 44   | 0.1864        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.1148 | 45   | 0.2126        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.1173 | 46   | 0.1589        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.1199 | 47   | 0.2539        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.1224 | 48   | 0.2403        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.125  | 49   | 0.1666        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.1276 | 50   | 0.1633        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.1301 | 51   | 0.2204        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.1327 | 52   | 0.0716        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.1352 | 53   | 0.1254        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.1378 | 54   | 0.3478        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.1403 | 55   | 0.2607        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.1429 | 56   | 0.2158        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.1454 | 57   | 0.2082        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.1480 | 58   | 0.2334        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.1505 | 59   | 0.2203        | 0.9447   | 0.2167                 | 2.4175        | 0.1710    | 0.0204    | 0.2824              | 0.9129                   | 0.6641               | 0.7343             |
| 0.1531 | 60   | 0.1368        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.1556 | 61   | 0.2153        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.1582 | 62   | 0.0711        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.1607 | 63   | 0.2255        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.1633 | 64   | 0.0982        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.1658 | 65   | 0.1388        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.1684 | 66   | 0.1797        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.1709 | 67   | 0.4173        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.1735 | 68   | 0.0102        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.1760 | 69   | 0.0634        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.1786 | 70   | 0.1956        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.1811 | 71   | 0.2188        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.1837 | 72   | 0.1399        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.1862 | 73   | 0.1489        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.1888 | 74   | 0.1567        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.1913 | 75   | 0.2404        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.1939 | 76   | 0.1295        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.1964 | 77   | 0.4541        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.1990 | 78   | 0.2364        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.2015 | 79   | 0.0929        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.2041 | 80   | 0.1699        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.2066 | 81   | 0.1846        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.2092 | 82   | 0.1126        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.2117 | 83   | 0.1151        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.2143 | 84   | 0.2015        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.2168 | 85   | 0.1028        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.2194 | 86   | 0.2284        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.2219 | 87   | 0.1368        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.2245 | 88   | 0.0836        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.2270 | 89   | 0.1276        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.2296 | 90   | 0.181         | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.2321 | 91   | 0.1516        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.2347 | 92   | 0.1769        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.2372 | 93   | 0.1261        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.2398 | 94   | 0.2324        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.2423 | 95   | 0.1046        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.2449 | 96   | 0.1372        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.2474 | 97   | 0.0654        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.25   | 98   | 0.2279        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.2526 | 99   | 0.0807        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.2551 | 100  | 0.123         | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.2577 | 101  | 0.1464        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.2602 | 102  | 0.0897        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.2628 | 103  | 0.1612        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.2653 | 104  | 0.1289        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.2679 | 105  | 0.7234        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.2704 | 106  | 0.1004        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.2730 | 107  | 0.1227        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.2755 | 108  | 0.2446        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.2781 | 109  | 0.1338        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.2806 | 110  | 0.0427        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.2832 | 111  | 0.1149        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.2857 | 112  | 0.1524        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.2883 | 113  | 0.1308        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.2908 | 114  | 0.192         | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.2934 | 115  | 0.141         | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.2959 | 116  | 0.1539        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.2985 | 117  | 0.1548        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.3010 | 118  | 0.1284        | 0.8682   | 0.1388                 | 2.3304        | 0.1062    | 0.0200    | 0.2694              | 0.9151                   | 0.6651               | 0.7364             |
| 0.3036 | 119  | 0.0939        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.3061 | 120  | 0.2675        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.3087 | 121  | 0.1542        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.3112 | 122  | 0.1347        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.3138 | 123  | 0.1285        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.3163 | 124  | 0.1025        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.3189 | 125  | 0.0879        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.3214 | 126  | 0.0446        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.3240 | 127  | 0.1739        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.3265 | 128  | 0.1309        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.3291 | 129  | 0.1737        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.3316 | 130  | 0.1063        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.3342 | 131  | 0.0568        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.3367 | 132  | 0.1966        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.3393 | 133  | 0.2336        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.3418 | 134  | 0.1716        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.3444 | 135  | 0.0979        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.3469 | 136  | 0.1319        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.3495 | 137  | 0.1058        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.3520 | 138  | 0.225         | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.3546 | 139  | 0.1045        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.3571 | 140  | 0.1066        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.3597 | 141  | 0.1234        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.3622 | 142  | 0.1707        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.3648 | 143  | 0.1204        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.3673 | 144  | 0.2086        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.3699 | 145  | 0.0982        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.3724 | 146  | 0.0937        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.375  | 147  | 0.1763        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.3776 | 148  | 0.0601        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.3801 | 149  | 0.1354        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.3827 | 150  | 0.1135        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.3852 | 151  | 0.2146        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.3878 | 152  | 0.0868        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.3903 | 153  | 0.2428        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.3929 | 154  | 0.0582        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.3954 | 155  | 0.1299        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.3980 | 156  | 0.0911        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.4005 | 157  | 0.1184        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.4031 | 158  | 0.0692        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.4056 | 159  | 0.1228        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.4082 | 160  | 0.0574        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.4107 | 161  | 0.0822        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.4133 | 162  | 0.1071        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.4158 | 163  | 0.0544        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.4184 | 164  | 0.1261        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.4209 | 165  | 0.094         | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.4235 | 166  | 0.1539        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.4260 | 167  | 0.045         | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.4286 | 168  | 0.1074        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.4311 | 169  | 0.1626        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.4337 | 170  | 0.1337        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.4362 | 171  | 0.1737        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.4388 | 172  | 0.104         | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.4413 | 173  | 0.0989        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.4439 | 174  | 0.2015        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.4464 | 175  | 0.1364        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.4490 | 176  | 0.0968        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.4515 | 177  | 0.0868        | 0.8198   | 0.0984                 | 2.3936        | 0.0804    | 0.0204    | 0.2730              | 0.9166                   | 0.6676               | 0.7384             |
| 0.4541 | 178  | 0.0538        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.4566 | 179  | 0.0855        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.4592 | 180  | 0.1492        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.4617 | 181  | 0.0799        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.4643 | 182  | 0.0979        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.4668 | 183  | 0.087         | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.4694 | 184  | 0.1763        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.4719 | 185  | 0.1646        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.4745 | 186  | 0.1483        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.4770 | 187  | 0.1098        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.4796 | 188  | 0.6778        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.4821 | 189  | 0.116         | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.4847 | 190  | 0.1465        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.4872 | 191  | 0.1113        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.4898 | 192  | 0.1467        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.4923 | 193  | 0.0744        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.4949 | 194  | 0.1342        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.4974 | 195  | 0.0979        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.5    | 196  | 0.1969        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.5026 | 197  | 0.1349        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.5051 | 198  | 0.1122        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.5077 | 199  | 0.1032        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.5102 | 200  | 0.0757        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.5128 | 201  | 0.5715        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.5153 | 202  | 0.0359        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.5179 | 203  | 0.0845        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.5204 | 204  | 0.0776        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.5230 | 205  | 0.154         | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.5255 | 206  | 0.0553        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.5281 | 207  | 0.0871        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.5306 | 208  | 0.1214        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.5332 | 209  | 0.1983        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.5357 | 210  | 0.1244        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.5383 | 211  | 0.0517        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.5408 | 212  | 0.1522        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.5434 | 213  | 0.0749        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.5459 | 214  | 0.0966        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.5485 | 215  | 0.1224        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.5510 | 216  | 0.2397        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.5536 | 217  | 0.0847        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.5561 | 218  | 0.0252        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.5587 | 219  | 0.1269        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.5612 | 220  | 0.1205        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.5638 | 221  | 0.046         | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.5663 | 222  | 0.0701        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.5689 | 223  | 0.1206        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.5714 | 224  | 0.059         | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.5740 | 225  | 0.1602        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.5765 | 226  | 0.098         | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.5791 | 227  | 0.0658        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.5816 | 228  | 0.0755        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.5842 | 229  | 0.1011        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.5867 | 230  | 0.1612        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.5893 | 231  | 0.0268        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.5918 | 232  | 0.0478        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.5944 | 233  | 0.0741        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.5969 | 234  | 0.0985        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.5995 | 235  | 0.0736        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.6020 | 236  | 0.1142        | 0.7994   | 0.1305                 | 2.3555        | 0.0615    | 0.0213    | 0.2741              | 0.9172                   | 0.6767               | 0.7332             |
| 0.6046 | 237  | 0.1271        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.6071 | 238  | 0.061         | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.6097 | 239  | 0.0756        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.6122 | 240  | 0.0948        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.6148 | 241  | 0.1604        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.6173 | 242  | 0.0668        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.6199 | 243  | 0.0386        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.6224 | 244  | 0.1708        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.625  | 245  | 0.0829        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.6276 | 246  | 0.1878        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.6301 | 247  | 0.1039        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.6327 | 248  | 0.064         | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.6352 | 249  | 0.106         | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.6378 | 250  | 0.1597        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.6403 | 251  | 0.4868        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.6429 | 252  | 0.1583        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.6454 | 253  | 0.0839        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.6480 | 254  | 0.071         | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.6505 | 255  | 0.1673        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.6531 | 256  | 0.5533        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.6556 | 257  | 0.1301        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.6582 | 258  | 0.085         | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.6607 | 259  | 0.0545        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.6633 | 260  | 0.0408        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.6658 | 261  | 0.6112        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.6684 | 262  | 0.1493        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.6709 | 263  | 0.1581        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.6735 | 264  | 0.2356        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.6760 | 265  | 0.1972        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.6786 | 266  | 0.0527        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.6811 | 267  | 0.1335        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.6837 | 268  | 0.0674        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.6862 | 269  | 0.0656        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.6888 | 270  | 0.0622        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.6913 | 271  | 0.2093        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.6939 | 272  | 0.0605        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.6964 | 273  | 0.117         | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.6990 | 274  | 0.0991        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.7015 | 275  | 0.1294        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.7041 | 276  | 0.0482        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.7066 | 277  | 0.062         | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.7092 | 278  | 0.1289        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.7117 | 279  | 0.103         | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.7143 | 280  | 0.1764        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.7168 | 281  | 0.1517        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.7194 | 282  | 0.128         | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.7219 | 283  | 0.1119        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.7245 | 284  | 0.0813        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.7270 | 285  | 0.0525        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.7296 | 286  | 0.1221        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.7321 | 287  | 0.0645        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.7347 | 288  | 0.1155        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.7372 | 289  | 0.0854        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.7398 | 290  | 0.0759        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.7423 | 291  | 0.0795        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.7449 | 292  | 0.0842        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.7474 | 293  | 0.1039        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.75   | 294  | 0.0525        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.7526 | 295  | 0.0807        | 0.8120   | 0.0891                 | 2.4979        | 0.0711    | 0.0203    | 0.2989              | 0.9157                   | 0.6781               | 0.7280             |
| 0.7551 | 296  | 0.059         | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.7577 | 297  | 0.1255        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.7602 | 298  | 0.075         | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.7628 | 299  | 0.0668        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.7653 | 300  | 0.1193        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.7679 | 301  | 0.0539        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.7704 | 302  | 0.0465        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.7730 | 303  | 0.0324        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.7755 | 304  | 0.0797        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.7781 | 305  | 0.1331        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.7806 | 306  | 0.0831        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.7832 | 307  | 0.1194        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.7857 | 308  | 0.1545        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.7883 | 309  | 0.1273        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.7908 | 310  | 0.0925        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.7934 | 311  | 0.1217        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.7959 | 312  | 0.0549        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.7985 | 313  | 0.1441        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.8010 | 314  | 0.1327        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.8036 | 315  | 0.0495        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.8061 | 316  | 0.0473        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.8087 | 317  | 0.1109        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.8112 | 318  | 0.1102        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.8138 | 319  | 0.0674        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.8163 | 320  | 0.1076        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.8189 | 321  | 0.076         | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.8214 | 322  | 0.0899        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.8240 | 323  | 0.0539        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.8265 | 324  | 0.0516        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.8291 | 325  | 0.0607        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.8316 | 326  | 0.1574        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.8342 | 327  | 0.1324        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.8367 | 328  | 0.094         | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.8393 | 329  | 0.0861        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.8418 | 330  | 0.0991        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.8444 | 331  | 0.03          | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.8469 | 332  | 0.0785        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.8495 | 333  | 0.1042        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.8520 | 334  | 0.0184        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.8546 | 335  | 0.033         | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.8571 | 336  | 0.0593        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.8597 | 337  | 0.0798        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.8622 | 338  | 0.0746        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.8648 | 339  | 0.0629        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.8673 | 340  | 0.0401        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.8699 | 341  | 0.2941        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.8724 | 342  | 0.0796        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.875  | 343  | 0.0661        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.8776 | 344  | 0.1058        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.8801 | 345  | 0.1774        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.8827 | 346  | 0.1408        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.8852 | 347  | 0.0373        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.8878 | 348  | 0.0758        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.8903 | 349  | 0.0997        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.8929 | 350  | 0.045         | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.8954 | 351  | 0.0246        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.8980 | 352  | 0.0645        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.9005 | 353  | 0.1046        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.9031 | 354  | 0.0857        | 0.8229   | 0.1095                 | 2.6739        | 0.0849    | 0.0206    | 0.3026              | 0.9160                   | 0.6698               | 0.7347             |
| 0.9056 | 355  | 0.1487        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.9082 | 356  | 0.0759        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.9107 | 357  | 0.1082        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.9133 | 358  | 0.1135        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.9158 | 359  | 0.1303        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.9184 | 360  | 0.0862        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.9209 | 361  | 0.0763        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.9235 | 362  | 0.0839        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.9260 | 363  | 0.0715        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.9286 | 364  | 0.0517        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.9311 | 365  | 0.0902        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.9337 | 366  | 0.0296        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.9362 | 367  | 0.1111        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.9388 | 368  | 0.0777        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.9413 | 369  | 0.0655        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.9439 | 370  | 0.0833        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.9464 | 371  | 0.0711        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.9490 | 372  | 0.0473        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.9515 | 373  | 0.0376        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.9541 | 374  | 0.0859        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.9566 | 375  | 0.0958        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.9592 | 376  | 0.0709        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.9617 | 377  | 0.0674        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.9643 | 378  | 0.0601        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.9668 | 379  | 0.0953        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.9694 | 380  | 0.069         | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.9719 | 381  | 0.0953        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.9745 | 382  | 0.1069        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.9770 | 383  | 0.149         | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.9796 | 384  | 0.1037        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.9821 | 385  | 0.0856        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.9847 | 386  | 0.0465        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.9872 | 387  | 0.1756        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.9898 | 388  | 0.0972        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |
| 0.9923 | 389  | 0.0868        | -        | -                      | -             | -         | -         | -                   | -                        | -                    | -                  |

</details>

### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.51.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.5.0
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->