File size: 166,742 Bytes
1c5c923 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 |
---
language:
- en
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:624583
- loss:CachedGISTEmbedLoss
base_model: BAAI/bge-m3
widget:
- source_sentence: Double Paralympic champion Kadeena Cox has been left out of the
British Para-cycling performance squad.
sentences:
- 'Ten stamps will be on sale on 7 July, marking five decades since the band turned
professional.
The collection include the band''s most famous album covers as well as live performance
shots.
Pink Floyd became known for its innovative album covers, which were made in collaboration
with leading graphic designers and photographers.
The album covers that have been made into stamps include The Piper At The Gates
Of Dawn, Atom Heart Mother, The Dark Side Of The Moon, Wish You Were Here, Animals
and The Endless River.
A further four stamps show the band performing live on tour, including one photograph
from a concert at London''s UFO Club in 1966.
Pink Floyd were among the first groups to make extensive use of light shows and
projection of films for their live concerts, which increased in ambition over
the decades.
The band was formed in 1965 by Roger Waters, drummer Nick Mason and keyboardist
Rick Wright, later joined by guitarist Syd Barrett.
In 1968, guitarist David Gilmour joined the band shortly before Barrett''s departure.
The stamps are available to pre-order on the Post Office website and will be physically
available in 8,000 post offices from 7 July 2016.'
- 'It said pre-tax profit for the year to the end of March was £593m, compared with
£735m a year earlier.
Operating profit at its wholesale gas division fell 94% to just £2.2m, from £36.6m
a year earlier, as a result of the fall in gas prices.
Costs relating to its coal-fired power stations rose to £287m in the year.
In January, SSE cut its standard gas tariff for domestic customers by 5.3%.
But the UK''s second largest energy company still lost about 300,000 energy customers
in the year, leaving it with 8.2 million households and businesses.
SSE chief executive Alistair Phillips-Davies said the energy firm had coped well
with "the impact of prevailing commodity prices and intense retail market competition".
"At the same time, SSE has continued to demonstrate financial discipline and commitment
to its long-term strategic framework. The fact that some of the mist is beginning
to clear around the legislative, political and regulatory environment means there
are grounds for some cautious optimism for the next couple of years," he added.
"SSE continues to invest for the future and in the year ahead plans almost £1.75bn
of investment into new energy infrastructure in the UK and Ireland and improvements
in services for our customers,"
In March, SSE closed its Ferrybridge coal-fired power station in Yorkshire.
SSE also announced on Wednesday that it would be selling up to a third of its
50% stake in gas distribution business SGN to raise cash for shareholders or to
reinvest.'
- 'The 26-year-old, who won gold medals in both cycling and athletics in Rio last
year, is instead focusing on training for the World Para-Athletics Championships
in London this summer.
Cox had her UK Sport funding suspended in January while she took part in Channel
4 programme The Jump.
GB''s 26-strong squad includes Rio gold medallists Sarah Storey and Jody Cundy.
Storey, 39, became Britain''s most successful female Paralympian when she won
her 14th gold medal at the Rio Games.
Cundy, 38, and like Storey a former swimmer, has won seven Paralympic golds -
four in cycling.
They are joined in the ''podium squad'' by fellow Paralympic medallists Megan
Giglia, Karen Darke, Jon-Allan Butterworth, Louis Rolfe, Crystal Lane and David
Stone.
With no track events scheduled for 2017 or 2018, British Cycling is happy to allow
Cox extended time away from the programme.
It said in a statement: "Kadeena decided to take a break from cycling at the start
of 2017 to pursue other opportunities afforded to her by her incredible achievements
at the Paralympics, a decision we fully respect.
"Her focus is currently on her training programme for the 2017 IPC Athletic World
Championships in London and she has the full support of the Great Britain cycling
team."
Tuesday''s squad announcement comes a fortnight after British Cycling announced
changes to the Para-cycling pathway in the build-up to Tokyo 2020.
Riders on the Paralympic world-class programme are now split into two groups -
podium and podium potential - while a foundation programme has also been established.
Great Britain 2017 squad in full:
Podium: James Ball, Steve Bate, Jon-Allan Butterworth, Jody Cundy, Karen Darke,
Adam Duggleby, Lora Fachie, Neil Fachie, Megan Giglia, Jon Gildea, Corrine Hall,
Crystal Lane, Craig Maclean, Pete Mitchell, Louis Rolfe, Matt Rotherham, Helen
Scott, David Stone, Dame Sarah Storey, Sophie Thornhill.
Podium Potential: Will Bjergfelt, Craig McCann, Mel Nicholls, Simon Price, Liz
Saul, David Smith.'
- source_sentence: A clean kitchen with the windows white and open.
sentences:
- 'Spacious white kitchen with brown cabinetry, sink and appliances. '
- People are in the house.
- Cramped black kitchen with white cabinetry, sink and appliances.
- source_sentence: what is the full form of ms dos
sentences:
- '89th Academy Awards Moonlight won three awards including Best Picture and La
La Land won the most awards of the ceremony with six after receiving a record-tying
14 nominations. In an event unprecedented in the history of the Oscars, La La
Land was incorrectly announced as the Best Picture. After a few minutes the error
was corrected and Moonlight was declared the winner.[8][9] Moonlight became the
first film with an all-black cast and the first LGBT-themed film to win Best Picture.[10][11]
Hacksaw Ridge and Manchester by the Sea won two awards each. Winners with one
award include Arrival, Fantastic Beasts and Where to Find Them, Fences, The Jungle
Book, O.J.: Made in America, Piper, The Salesman, Sing, Suicide Squad, The White
Helmets, and Zootopia.'
- MS-DOS MS-DOS (/ˌɛmˌɛsˈdɒs/ em-ess-DOSS; acronym for Microsoft Disk Operating
System) is an operating system for x86-based personal computers mostly developed
by Microsoft. Collectively, MS-DOS, its rebranding as IBM PC DOS, and some operating
systems attempting to be compatible with MS-DOS, are sometimes referred to as
"DOS" (which is also the generic acronym for disk operating system). MS-DOS was
the main operating system for IBM PC compatible personal computers during the
1980s and the early 1990s, when it was gradually superseded by operating systems
offering a graphical user interface (GUI), in various generations of the graphical
Microsoft Windows operating system.
- Vincent and the Doctor "Vincent and the Doctor" is the tenth episode in the fifth
series of British science fiction television series Doctor Who, first broadcast
on BBC One on 5 June 2010. It was written by Richard Curtis and directed by Jonny
Campbell and featured an uncredited guest appearance from actor Bill Nighy.
- source_sentence: who does the voice for yoda in the starwars films
sentences:
- List of backward compatible games for Xbox One During Microsoft's E3 2015 press
conference on June 15, 2015, Microsoft announced plans to introduce Xbox 360 backward
compatibility on the Xbox One at no additional cost.[10] Supported Xbox 360 games
will run within an emulator and have access to certain Xbox One features, such
as recording and broadcasting gameplay.[11] Games do not run directly from discs.
A relicensed form of the game is downloaded automatically when a supported game
is inserted, instead of having to make extensive modifications to the game in-order
to port the original title. This means, that the only reason every single Xbox
360 title is not available, is a judicial issue, not an engineering one. All Xbox
360 games could run out-of-the-box on Xbox One, as they require no modifications
or porting to run, other than a valid license. While digitally-purchased games
will automatically appear for download in the user's library once available.[10]
As with Xbox One titles,[12] if the game is installed using physical media, the
disc is still required for validation purposes.[10][11]
- Frank Oz Frank Oz (born Frank Richard Oznowicz[2] on May 25, 1944) is an English-born
American puppeteer, filmmaker and actor. His career began as a puppeteer, where
he performed the Muppet characters of Miss Piggy, Fozzie Bear, Animal, and Sam
Eagle in The Muppet Show, and Cookie Monster, Bert, and Grover in Sesame Street.[4]
He is also known for being the puppeteer and voice of Yoda in the Star Wars films.
- Battle of Barnet The Battle of Barnet was a decisive engagement in the Wars of
the Roses, a dynastic conflict of 15th-century England. The military action, along
with the subsequent Battle of Tewkesbury, secured the throne for Edward IV. On
14 April 1471 near Barnet, then a small Hertfordshire town north of London, Edward
led the House of York in a fight against the House of Lancaster, which backed
Henry VI for the throne. Leading the Lancastrian army was Richard Neville, 16th
Earl of Warwick, who played a crucial role in the fate of each king. Historians
regard the battle as one of the most important clashes in the Wars of the Roses,
since it brought about a decisive turn in the fortunes of the two houses. Edward's
victory was followed by 14 years of Yorkist rule over England.
- source_sentence: In mathematical astronomy , his fame is due to the introduction
of the astronomical globe , and his early contributions to understanding the movement
of the planets .
sentences:
- In 1994 , Rodrigo Leão left the band to start a solo career , replaced by Carlos
Maria Trindade ( keyboard synthesizer ) .
- His fame is due in mathematical astronomy to the introduction of the astronomical
globe and to his early contributions to the understanding of the movement of the
planets .
- The Keita dynasty ruled Mali from the 12th to the early 17th century , pre-imperial
and imperial .
datasets:
- bobox/enhanced_NLI-50K
- sentence-transformers/natural-questions
- tals/vitaminc
- bobox/xSum-processed
- google-research-datasets/paws
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- cosine_mcc
model-index:
- name: SentenceTransformer based on BAAI/bge-m3
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.9033761016886019
name: Pearson Cosine
- type: spearman_cosine
value: 0.9159521259386664
name: Spearman Cosine
- task:
type: binary-classification
name: Binary Classification
dataset:
name: allNLI dev
type: allNLI-dev
metrics:
- type: cosine_accuracy
value: 0.7734375
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.716580331325531
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.6964285714285715
name: Cosine F1
- type: cosine_f1_threshold
value: 0.6203938126564026
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.5652173913043478
name: Cosine Precision
- type: cosine_recall
value: 0.9069767441860465
name: Cosine Recall
- type: cosine_ap
value: 0.669835314309871
name: Cosine Ap
- type: cosine_mcc
value: 0.5249655273153817
name: Cosine Mcc
- task:
type: binary-classification
name: Binary Classification
dataset:
name: Qnli dev
type: Qnli-dev
metrics:
- type: cosine_accuracy
value: 0.7109375
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.7116010189056396
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.7092198581560283
name: Cosine F1
- type: cosine_f1_threshold
value: 0.5781652927398682
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.6097560975609756
name: Cosine Precision
- type: cosine_recall
value: 0.847457627118644
name: Cosine Recall
- type: cosine_ap
value: 0.7346738886839252
name: Cosine Ap
- type: cosine_mcc
value: 0.3986067385792586
name: Cosine Mcc
---
# SentenceTransformer based on BAAI/bge-m3
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) on the [NLI](https://huggingface.co/datasets/bobox/enhanced_NLI-50K), [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions), [vitaminc](https://huggingface.co/datasets/tals/vitaminc), [xsum](https://huggingface.co/datasets/bobox/xSum-processed), [paws](https://huggingface.co/datasets/google-research-datasets/paws) and global_dataset datasets. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision 5617a9f61b028005a4858fdac845db406aefb181 -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Datasets:**
- [NLI](https://huggingface.co/datasets/bobox/enhanced_NLI-50K)
- [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions)
- [vitaminc](https://huggingface.co/datasets/tals/vitaminc)
- [xsum](https://huggingface.co/datasets/bobox/xSum-processed)
- [paws](https://huggingface.co/datasets/google-research-datasets/paws)
- global_dataset
- **Language:** en
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): AdvancedWeightedPooling(
(mha): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1024, out_features=1024, bias=True)
)
(MLP): Sequential(
(0): SwiGLUBlock(
(in_proj_swish): Linear(in_features=1024, out_features=2048, bias=True)
(in_proj_gate): Linear(in_features=1024, out_features=2048, bias=True)
)
(1): Dropout(p=0.05, inplace=False)
(2): Linear(in_features=2048, out_features=1024, bias=True)
)
(layernorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
)
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("bobox/XLMRoBERTaM3-CustomPoolin-v1.02-1024dMLP-s1-checkpoints-tmp")
# Run inference
sentences = [
'In mathematical astronomy , his fame is due to the introduction of the astronomical globe , and his early contributions to understanding the movement of the planets .',
'His fame is due in mathematical astronomy to the introduction of the astronomical globe and to his early contributions to the understanding of the movement of the planets .',
'In 1994 , Rodrigo Leão left the band to start a solo career , replaced by Carlos Maria Trindade ( keyboard synthesizer ) .',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:----------|
| pearson_cosine | 0.9034 |
| **spearman_cosine** | **0.916** |
#### Binary Classification
* Datasets: `allNLI-dev` and `Qnli-dev`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | allNLI-dev | Qnli-dev |
|:--------------------------|:-----------|:-----------|
| cosine_accuracy | 0.7734 | 0.7109 |
| cosine_accuracy_threshold | 0.7166 | 0.7116 |
| cosine_f1 | 0.6964 | 0.7092 |
| cosine_f1_threshold | 0.6204 | 0.5782 |
| cosine_precision | 0.5652 | 0.6098 |
| cosine_recall | 0.907 | 0.8475 |
| **cosine_ap** | **0.6698** | **0.7347** |
| cosine_mcc | 0.525 | 0.3986 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Datasets
<details><summary>NLI</summary>
#### NLI
* Dataset: [NLI](https://huggingface.co/datasets/bobox/enhanced_NLI-50K) at [d43e6fe](https://huggingface.co/datasets/bobox/enhanced_NLI-50K/tree/d43e6fe7f1e171f916502c123235d4b9ec997cb4)
* Size: 750 training samples
* Columns: <code>anchor</code>, <code>entailment</code>, and <code>negative</code>
* Approximate statistics based on the first 750 samples:
| | anchor | entailment | negative |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 5 tokens</li><li>mean: 24.9 tokens</li><li>max: 176 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 16.4 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.53 tokens</li><li>max: 49 tokens</li></ul> |
* Samples:
| anchor | entailment | negative |
|:----------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------|:-------------------------------------------------------------------|
| <code>09:00 On Thursday, AT&T said they have teamed with Juniper Networks to develop a mobile security platform for both businesses and consumers.</code> | <code>AT&T and Juniper to develop mobile security platform</code> | <code>AT&T and Juniper disassemble mobile security platform</code> |
| <code>two police motorcycles driving down the road in front of a cop car</code> | <code>Two motorcycle cops and a police car on a street. </code> | <code>No motorcycle cops and a police car on a street.</code> |
| <code>I've told you about their size.</code> | <code>I have told you about their size.</code> | <code>I have not told you about their size.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.02}
```
</details>
<details><summary>natural-questions</summary>
#### natural-questions
* Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 750 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 750 samples:
| | sentence1 | sentence2 |
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 10 tokens</li><li>mean: 13.32 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 148.26 tokens</li><li>max: 651 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:--------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>who is winner in bigg boss season 5 kannada</code> | <code>Bigg Boss Kannada 5 Bigg Boss Kannada 5 (BBK5) was the fifth season of the Kannada television series Bigg Boss Kannada, that premiered on 15 October 2017.[1] Sudeep reprised his role as the host of the show.[2] The finale of the season took place 28 January 2018, and rapper Chandan Shetty was declared the winner of the show and the prize money of ₹50 lakh. Sales representative Diwaker was voted the runner-up.[3]</code> |
| <code>what side of the street do they drive on in sweden</code> | <code>Left- and right-hand traffic Sweden was LHT from about 1734 to 1967,[17] despite having land borders with RHT countries, and approximately 90 percent of cars being left-hand drive (LHD) vehicles.[18] A referendum was held in 1955, with an overwhelming majority voting against a change to RHT. Nevertheless, some years later the government ordered a conversion, which took place at 5 am on Sunday, 3 September 1967. The accident rate dropped sharply after the change,[19] but soon rose back to near its original level.[20] The day was known as Dagen H ("H-Day"), the 'H' being for Högertrafik or right traffic. When Iceland switched the following year, it was known as H-dagurinn, again meaning "H-Day".[21]</code> |
| <code>what is the difference between mandelbrot and biscotti</code> | <code>Mandelbrot (cookie) Its precise origin is unknown, as is its historic relationship with biscotti, a similar Italian cookie. While mandelbrot and biscotti both have a crunchy exterior, mandelbrot is slightly softer than biscotti due to its higher oil and/or butter content.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.02}
```
</details>
<details><summary>vitaminc</summary>
#### vitaminc
* Dataset: [vitaminc](https://huggingface.co/datasets/tals/vitaminc) at [be6febb](https://huggingface.co/datasets/tals/vitaminc/tree/be6febb761b0b2807687e61e0b5282e459df2fa0)
* Size: 370,653 training samples
* Columns: <code>claim</code> and <code>evidence</code>
* Approximate statistics based on the first 1000 samples:
| | claim | evidence |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 9 tokens</li><li>mean: 20.44 tokens</li><li>max: 73 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 44.61 tokens</li><li>max: 191 tokens</li></ul> |
* Samples:
| claim | evidence |
|:----------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------|
| <code>The Script is a pop band .</code> | <code>The Script are an Irish pop band formed in 2007 in Dublin , Ireland .</code> |
| <code>Scott Skiles scored fewer than 55 points in home games .</code> | <code>He set several records during high school , including most points in a home game ( 53 ) and most points in an away game ( 56 ) .</code> |
| <code>The Black Cauldron was released before July 25 , 1985 .</code> | <code>The film was distributed theatrically through Buena Vista Distribution on July 24 , 1985 .</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.02}
```
</details>
<details><summary>xsum</summary>
#### xsum
* Dataset: [xsum](https://huggingface.co/datasets/bobox/xSum-processed) at [044020f](https://huggingface.co/datasets/bobox/xSum-processed/tree/044020f516c1830da392e567474cd5452971366f)
* Size: 131,779 training samples
* Columns: <code>summary</code> and <code>document</code>
* Approximate statistics based on the first 1000 samples:
| | summary | document |
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 11 tokens</li><li>mean: 30.72 tokens</li><li>max: 62 tokens</li></ul> | <ul><li>min: 63 tokens</li><li>mean: 311.14 tokens</li><li>max: 550 tokens</li></ul> |
* Samples:
| summary | document |
|:------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>The amount of time spent needing daily care in late life has doubled in England over the past two decades, a study suggests.</code> | <code>The Newcastle University study found men spent 2.4 years on average needing regular care and women three years.<br>This includes everything from help with washing and dressing each day to round-the-clock care.<br>Researchers said it suggested there needed to be a sharp increase in the number of care home places to cope.<br>It comes as ministers consider a new way to fund the system.<br>The government has promised major reform amid reports that councils are struggling to provide enough support to cope with the ageing population.<br>The latest research, published in the Lancet, looked at not just the growth in the numbers of older people but also how many of those years were spent needing daily care.<br>Between 1991 and 2011, life expectancy increased by more than four years for both men and women to 82.6 and 85.6 respectively.<br>But the number of those years spent with substantial care needs rose much more rapidly, from 1.1 to 2.4 for men and 1.6 to three for women.<br>Looking ahead to 2025, it means there wi...</code> |
| <code>A man has admitted sexually assaulting two women in the same street two months apart.</code> | <code>Craig Perkins had initially denied being involved in the attacks in Bournemouth's Boundary Road in September and December of last year.<br>But on Wednesday at Bournemouth Crown Court he pleaded guilty to two counts of sexual assault.<br>The 29-year-old, of Victoria Park Road, Bournemouth, has been remanded in custody and will be sentenced on 5 May.<br>Police said the victims were both in their 20s - the first was assaulted on Tuesday 13 September and the second attack happened on Thursday 24 November.<br>Perkins was arrested on 14 December.<br>Det Ch Insp Sarah Derbyshire, of Dorset Police's major crime investigation team, said: "Stranger sex attacks such as these are very rare in Dorset and we are committed toward investigating them thoroughly and bringing the offender to justice.<br>"The victims in this case have been updated about Perkins' guilty pleas and I would like to pay tribute to them for having the confidence to report these offences to Dorset Police and the assistance they have given to the ...</code> |
| <code>Durham produced a below-par batting display as they lost by seven wickets to Worcestershire in the One-Day Cup.</code> | <code>A 22 overs-a-side game was all that was possible after a long rain delay, but the home side were bowled out for 90.<br>Mark Stoneman top-scored with 29 and the only other batsman to reach double figures was Paul Collingwood (17).<br>Chris Rushworth took 3-19 as the visitors began their reply, but Alexei Kervezee (37) and Brett D'Oliveira (20) saw them to 91-3 with 17 balls in hand.<br>Their unbroken partnership was worth 60 after Kervezee collected the winning single from the bowling of Usman Arshad.<br>Durham reached 35-1 at the start of their innings after play got under way at 15:30 BST, but then lost four wickets for 11 runs.<br>D'Oliveira, Ed Barnard, Joe Leach and Chris Russell took two wickets each as they were finally dismissed at the start of the 22nd over.<br>Durham's total was their seventh-lowest in non-Twenty20 limited-overs matches games.<br>Rushworth exploited the conditions superbly at the start of Worcestershire's innings, but once he was out of the attack, Kervezee and D'Oliveira were abl...</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.02}
```
</details>
<details><summary>paws</summary>
#### paws
* Dataset: [paws](https://huggingface.co/datasets/google-research-datasets/paws) at [161ece9](https://huggingface.co/datasets/google-research-datasets/paws/tree/161ece9501cf0a11f3e48bd356eaa82de46d6a09)
* Size: 49,401 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 12 tokens</li><li>mean: 30.94 tokens</li><li>max: 56 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 30.97 tokens</li><li>max: 55 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Charley Frazier ( born August 12 , 1939 in Houston , Texas ) is a former American Football Wide Receiver from the NFL and the American Football League .</code> | <code>Charley Frazier ( born August 12 , 1939 in Houston , Texas ) is a former American football receiver in the American Football League and the NFL .</code> |
| <code>Indonesian dumplings were influenced and brought by Chinese immigrants to Indonesia .</code> | <code>Indonesian dumplings were influenced and brought to Indonesia by Chinese immigrants .</code> |
| <code>The SSSI has an area of 190.3 hectares , while the SAC has 168.3 hectares .</code> | <code>The SSSI has an area of 190.3 hectares while the SAC covers 168.3 hectares .</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.02}
```
</details>
<details><summary>global_dataset</summary>
#### global_dataset
* Dataset: global_dataset
* Size: 71,250 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 24.45 tokens</li><li>max: 115 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 106.19 tokens</li><li>max: 564 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Taobao is a Chinese online shopping site similar to eBay , Amazon and Rakuten , which is operated by Alibaba Group in Hangzhou , Zhejiang .</code> | <code>Taobao is a Chinese online shopping website similar to eBay , Amazon and Rakuten , which is operated in Hangzhou , Zhejiang by Alibaba Group .</code> |
| <code>Because of the lack of wood , boats were bundled with made papyrus reeds .</code> | <code>Because of the lack of wood , boats with papyrus reeds were bundled .</code> |
| <code>New Zealand leg-spinner Ish Sodhi hopes his stint playing in Nottinghamshire's T20 campaign this summer will lead to a longer stay in England.</code> | <code>The 24-year-old has played 41 international matches in all formats.<br>He has been particularly effective in T20, with 21 wickets at 14.47 and a strike-rate of a wicket every 13 balls.<br>"In the last year or so I have definitely been a lot more successful in the T20 stuff than in the other stuff," he told BBC Radio Nottingham.<br>"But in the last six months I have been finding my way in the four-stuff and one-dayers.<br>"In the future I would love to come over and play all the forms. At this stage the T20 is the main focus. It is still a wee, wee way away but I will continue to look to hone my T20 skills and try to be in tip-top condition when I come over."<br>Sodhi says playing in England is a "great opportunity" with the 2019 World Cup in mind.<br>"It's great to play at these grounds where I will potentially play a World Cup, which I am targeting," he said.<br>"It will be great to get used to conditions. The opportunity came up and I will try to grab it with both hands."<br>Sodhi will be the second of two ...</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.02}
```
</details>
### Evaluation Datasets
<details><summary>NLI</summary>
#### NLI
* Dataset: [NLI](https://huggingface.co/datasets/bobox/enhanced_NLI-50K) at [d43e6fe](https://huggingface.co/datasets/bobox/enhanced_NLI-50K/tree/d43e6fe7f1e171f916502c123235d4b9ec997cb4)
* Size: 85 evaluation samples
* Columns: <code>anchor</code>, <code>entailment</code>, and <code>negative</code>
* Approximate statistics based on the first 85 samples:
| | anchor | entailment | negative |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 9 tokens</li><li>mean: 17.02 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.96 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.53 tokens</li><li>max: 26 tokens</li></ul> |
* Samples:
| anchor | entailment | negative |
|:-------------------------------------------------------------|:----------------------------------------------------------------------|:----------------------------------------------------------------------|
| <code>The girls walk down the street.</code> | <code>Girls walk down the street.</code> | <code>Girls do not walk down the street.</code> |
| <code>Two computers sitting on top of a desk.</code> | <code>A laptop computer and a desktop computer on a white desk</code> | <code>A laptop computer and a desktop computer on a black desk</code> |
| <code>A bathroom with a toilette with it's seat down.</code> | <code>A bathroom with a sink and a toilet</code> | <code>A bathroom without a sink or a toilet</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.02}
```
</details>
<details><summary>natural-questions</summary>
#### natural-questions
* Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 113 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 113 samples:
| | sentence1 | sentence2 |
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 10 tokens</li><li>mean: 13.57 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 34 tokens</li><li>mean: 176.3 tokens</li><li>max: 2497 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:-------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>kiss him not me where does the anime end in the manga</code> | <code>Kiss Him, Not Me Kiss Him, Not Me, known in Japan as Watashi ga Motete Dōsunda (Japanese: 私がモテてどうすんだ, Hepburn: lit. What's the Point of Me Getting Popular?), is a Japanese romantic comedy shōjo manga series written and illustrated by Junko.[2] It is published by Kodansha since 2013 on Bessatsu Friend magazine.[3] Twelve volumes compiling the chapters have been released so far.[2] It is published online in English by Crunchyroll and the volumes will be published by Kodansha USA.[3] An audio drama adaptation of the first chapter was released on January 13, 2015.[4] An anime adaptation by Brain's Base aired in Japan between October and December 2016.[5][6] The manga won Best Shōjo Manga at the 40th Kodansha Manga Awards.</code> |
| <code>who sings i just want to use your love</code> | <code>Your Love (The Outfield song) "Your Love" is a song by the English rock band the Outfield, taken from their debut album Play Deep (1985). The song was penned by the band's guitarist John Spinks.</code> |
| <code>how many episodes of westworld are in season 1</code> | <code>Westworld (season 1) The first season of the American science fiction western television series Westworld (subtitled The Maze) premiered on HBO on October 2, 2016, and concluded on December 4, 2016. It consisted of ten episodes, each running approximately 60 minutes in length and was broadcast on Sundays in the United States. The complete first season was released on home media on November 7, 2017.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.02}
```
</details>
<details><summary>vitaminc</summary>
#### vitaminc
* Dataset: [vitaminc](https://huggingface.co/datasets/tals/vitaminc) at [be6febb](https://huggingface.co/datasets/tals/vitaminc/tree/be6febb761b0b2807687e61e0b5282e459df2fa0)
* Size: 63,054 evaluation samples
* Columns: <code>claim</code> and <code>evidence</code>
* Approximate statistics based on the first 1000 samples:
| | claim | evidence |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 10 tokens</li><li>mean: 22.35 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 37.94 tokens</li><li>max: 75 tokens</li></ul> |
* Samples:
| claim | evidence |
|:-------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>More than 273 people have died from the 2019-20 coronavirus outside mainland China .</code> | <code>More than 3,200 people have died : almost 3,000 in mainland China and around 275 in other countries .</code> |
| <code>More than 146,500 people have been infected with coronavirus globally , during the 2019�20 pandemic .</code> | <code>more than 147,000 cases have been confirmed worldwide .</code> |
| <code>Over 278,000 coronavirus cases had been confirmed around the world by March 21 , 2020 .</code> | <code>As of 21 March , more than 278,000 cases of COVID-19 have been reported in over 186 countries and territories , resulting in more than 11,500 deaths and 92,000 recoveries. virus seems to mostly spread between people via respiratory droplets .</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.02}
```
</details>
<details><summary>xsum</summary>
#### xsum
* Dataset: [xsum](https://huggingface.co/datasets/bobox/xSum-processed) at [044020f](https://huggingface.co/datasets/bobox/xSum-processed/tree/044020f516c1830da392e567474cd5452971366f)
* Size: 131,779 evaluation samples
* Columns: <code>summary</code> and <code>document</code>
* Approximate statistics based on the first 1000 samples:
| | summary | document |
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 17 tokens</li><li>mean: 30.71 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>min: 70 tokens</li><li>mean: 305.77 tokens</li><li>max: 543 tokens</li></ul> |
* Samples:
| summary | document |
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>A new species of moss has been found growing on 10 maple trees in a Carmarthenshire car park, but experts are in two minds about its origins.</code> | <code>Welsh Bristle-moss was discovered near Dryslwyn Castle, close to Llandeilo, by the Countryside Council for Wales.<br>It said it might have evolved from a genetically similar moss.<br>But it could be an undiscovered species that was imported from the Continent on maples used to landscape the car park in the 1990s.<br>There are about 900 species of moss in Britain and 587 of those are found in Wales.<br>The Welsh Bristle-moss was discovered during a survey which is recording mosses growing on trees in south Wales.<br>Experts said the moss had a unique combination of distinctive traits. It differed from related mosses because of its round-tipped leaf tips and flat leaf edges.<br>Countryside Council for Wales (CCW) moss ecologist Sam Bosanquet, who made the new find, said: "Welsh Bristle-moss highlights the need to be ever vigilant and open-minded, even when looking at plants in mundane places like car parks.<br>"This is a high-point in our regular work of recording mosses which grow on trees in south Wales.<br>"...</code> |
| <code>A former Soviet army officer has been convicted by a US jury of planning and leading a Taliban attack on American forces in Afghanistan in 2009.</code> | <code>The jury found Irek Hamidullin guilty on 15 counts, including supporting terrorists and conspiracy to use a weapon of mass destruction.<br>The 55-year-old is the first military prisoner from Afghanistan to be tried in a US federal court.<br>Some of the charges carry a mandatory life sentence.<br>About 30 insurgents died in the attack, with Hamidullin the only survivor, while no American or Afghan soldiers were killed.<br>Hamidullin, who did not testify during the trial, is expected to be sentenced on 6 November.<br>Lawyers say it is unusual for someone captured on the battlefield in Afghanistan to be transferred to the United States for trial in a federal court.<br>Hamidullin's defence lawyers had tried unsuccessfully to have the charges dismissed, saying their client was a prisoner of war and ineligible for trial in civilian court.<br>Prosecutors argued federal law protected US soldiers no matter where they were.<br>The jury in Richmond. Virginia, reached its verdict after five days of testimony and eight ho...</code> |
| <code>UK troops could be deployed to train moderate Syrian rebels in the fight against Islamic State militants (IS), the defence secretary has said.</code> | <code>Michael Fallon told BBC News that UK troops could be sent to a country neighbouring Syria, possibly Jordan.<br>He insisted however that UK forces would not engage in direct combat.<br>The US is leading efforts to train a Syrian opposition to fight IS, also known as ISIS, which has captured large parts of of the country.<br>The country's National Security Adviser Susan Rice said a deal had been reached with Turkey to allow the US to train Syrian rebels on its soil, although this has been denied by Turkish officials.<br>Mr Fallon discussed the possibility of launching training operations, while visiting the Royal Fleet Auxiliary Ship, Argus, in Falmouth.<br>A specialist team of 12 soldiers from the Yorkshire Regiment is already training Kurdish fighters in Iraq to use UK-supplied heavy machine guns.<br>And the UK is to fund bomb disposal training for the Kurdish Peshmerga forces to counter the threat of Improvised Explosive Devices (IEDs), Foreign Secretary Philip Hammond announced on Monday.<br>The Prime Mi...</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.02}
```
</details>
<details><summary>paws</summary>
#### paws
* Dataset: [paws](https://huggingface.co/datasets/google-research-datasets/paws) at [161ece9](https://huggingface.co/datasets/google-research-datasets/paws/tree/161ece9501cf0a11f3e48bd356eaa82de46d6a09)
* Size: 8,000 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 11 tokens</li><li>mean: 31.67 tokens</li><li>max: 56 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 31.33 tokens</li><li>max: 54 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:----------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------|
| <code>He also wrote a large number of vocal arrangements and orchestral accompaniments to varieties .</code> | <code>He also wrote a large number of vocal arrangements and orchestral accompaniments for varieties .</code> |
| <code>In 1994 , Rodrigo Leão left the band to start a solo career , being replaced by Carlos Maria Trindade ( keyboard synthesizer ) .</code> | <code>In 1994 , Rodrigo Leão left the band to start a solo career , replaced by Carlos Maria Trindade ( keyboard synthesizer ) .</code> |
| <code>Until 1951 , he was active as a socialist in post-war legislation when he decided to focus on local politics .</code> | <code>He was active as a socialist in the post-war legislature until 1951 , when he decided to focus on local politics .</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.02}
```
</details>
<details><summary>global_dataset</summary>
#### global_dataset
* Dataset: global_dataset
* Size: 256 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 256 samples:
| | sentence1 | sentence2 |
|:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 10 tokens</li><li>mean: 23.68 tokens</li><li>max: 51 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 112.38 tokens</li><li>max: 511 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>All babies born from Tuesday across the UK will have an anti-hepatitis B injection added to the other routine vaccinations they are given in their early life.</code> | <code>The jab protects against viral infections that cause cirrhosis and liver cancer.<br>Babies are already vaccinated against diphtheria, tetanus, whooping cough, Hib and polio.<br>Public Health England said the new vaccine had been "shown to be safe".<br>Babies are currently given vaccinations when they are eight, 12 and 16 weeks old and the new injection will be given at the same time as the others.<br>Previously, the hepatitis B vaccine was available on the NHS as a separate jab and was only administered to infants considered at risk, such as those born to infected mothers.<br>While hepatitis B rates in the UK are generally very low, in some inner city areas up to 1% of antenatal women are infected.<br>The infection has no symptoms so many of these women will be unaware they are ill, while their babies are considered at high risk.<br>Mary Ramsay, head of immunisation at Public Health England, said: "The Hexavalent vaccine has been extensively tested and shown to be safe and is widely used internationally wi...</code> |
| <code>A black man in a long sleeves white collared shirt and a tie is walking to work in a big city.</code> | <code>The man is wearing work attire and is walking to his job.</code> |
| <code>ACVM is based in Glasgow and has offices in Edinburgh , Aberdeen , Newcastle , Manchester and Milton Keynes .</code> | <code>ACVM is based in Glasgow and has subsidiaries in Edinburgh , Aberdeen , Newcastle , Manchester and Milton Keynes .</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.02}
```
</details>
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 192
- `per_device_eval_batch_size`: 256
- `learning_rate`: 0.0001
- `weight_decay`: 0.001
- `lr_scheduler_type`: cosine_with_min_lr
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 3.3333333333333335e-05}
- `warmup_ratio`: 0.15
- `save_safetensors`: False
- `fp16`: True
- `remove_unused_columns`: False
- `push_to_hub`: True
- `hub_model_id`: bobox/XLMRoBERTaM3-CustomPoolin-v1.02-1024dMLP-s1-checkpoints-tmp
- `hub_strategy`: all_checkpoints
- `hub_private_repo`: False
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 192
- `per_device_eval_batch_size`: 256
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 0.0001
- `weight_decay`: 0.001
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 3
- `max_steps`: -1
- `lr_scheduler_type`: cosine_with_min_lr
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 3.3333333333333335e-05}
- `warmup_ratio`: 0.15
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: False
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: False
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `tp_size`: 0
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: True
- `resume_from_checkpoint`: None
- `hub_model_id`: bobox/XLMRoBERTaM3-CustomPoolin-v1.02-1024dMLP-s1-checkpoints-tmp
- `hub_strategy`: all_checkpoints
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss | NLI loss | natural-questions loss | vitaminc loss | xsum loss | paws loss | global dataset loss | sts-test_spearman_cosine | allNLI-dev_cosine_ap | Qnli-dev_cosine_ap |
|:------:|:----:|:-------------:|:--------:|:----------------------:|:-------------:|:---------:|:---------:|:-------------------:|:------------------------:|:--------------------:|:------------------:|
| 0.0026 | 1 | 0.7912 | - | - | - | - | - | - | - | - | - |
| 0.0051 | 2 | 3.5781 | - | - | - | - | - | - | - | - | - |
| 0.0077 | 3 | 0.8711 | - | - | - | - | - | - | - | - | - |
| 0.0102 | 4 | 0.9923 | - | - | - | - | - | - | - | - | - |
| 0.0128 | 5 | 0.6723 | - | - | - | - | - | - | - | - | - |
| 0.0153 | 6 | 1.0542 | - | - | - | - | - | - | - | - | - |
| 0.0179 | 7 | 0.8721 | - | - | - | - | - | - | - | - | - |
| 0.0204 | 8 | 0.8121 | - | - | - | - | - | - | - | - | - |
| 0.0230 | 9 | 0.9226 | - | - | - | - | - | - | - | - | - |
| 0.0255 | 10 | 0.7534 | - | - | - | - | - | - | - | - | - |
| 0.0281 | 11 | 0.9769 | - | - | - | - | - | - | - | - | - |
| 0.0306 | 12 | 1.1295 | - | - | - | - | - | - | - | - | - |
| 0.0332 | 13 | 0.9773 | - | - | - | - | - | - | - | - | - |
| 0.0357 | 14 | 0.7239 | - | - | - | - | - | - | - | - | - |
| 0.0383 | 15 | 0.6364 | - | - | - | - | - | - | - | - | - |
| 0.0408 | 16 | 0.7573 | - | - | - | - | - | - | - | - | - |
| 0.0434 | 17 | 0.7629 | - | - | - | - | - | - | - | - | - |
| 0.0459 | 18 | 0.8665 | - | - | - | - | - | - | - | - | - |
| 0.0485 | 19 | 0.6049 | - | - | - | - | - | - | - | - | - |
| 0.0510 | 20 | 0.6587 | - | - | - | - | - | - | - | - | - |
| 0.0536 | 21 | 0.5717 | - | - | - | - | - | - | - | - | - |
| 0.0561 | 22 | 0.4781 | - | - | - | - | - | - | - | - | - |
| 0.0587 | 23 | 0.4699 | - | - | - | - | - | - | - | - | - |
| 0.0612 | 24 | 1.7145 | - | - | - | - | - | - | - | - | - |
| 0.0638 | 25 | 0.531 | - | - | - | - | - | - | - | - | - |
| 0.0663 | 26 | 0.5584 | - | - | - | - | - | - | - | - | - |
| 0.0689 | 27 | 0.398 | - | - | - | - | - | - | - | - | - |
| 0.0714 | 28 | 0.5015 | - | - | - | - | - | - | - | - | - |
| 0.0740 | 29 | 0.4741 | - | - | - | - | - | - | - | - | - |
| 0.0765 | 30 | 0.3762 | - | - | - | - | - | - | - | - | - |
| 0.0791 | 31 | 0.6952 | - | - | - | - | - | - | - | - | - |
| 0.0816 | 32 | 0.2723 | - | - | - | - | - | - | - | - | - |
| 0.0842 | 33 | 0.4301 | - | - | - | - | - | - | - | - | - |
| 0.0867 | 34 | 0.3839 | - | - | - | - | - | - | - | - | - |
| 0.0893 | 35 | 0.3154 | - | - | - | - | - | - | - | - | - |
| 0.0918 | 36 | 0.2796 | - | - | - | - | - | - | - | - | - |
| 0.0944 | 37 | 0.2964 | - | - | - | - | - | - | - | - | - |
| 0.0969 | 38 | 0.2232 | - | - | - | - | - | - | - | - | - |
| 0.0995 | 39 | 0.2661 | - | - | - | - | - | - | - | - | - |
| 0.1020 | 40 | 0.3133 | - | - | - | - | - | - | - | - | - |
| 0.1046 | 41 | 0.2047 | - | - | - | - | - | - | - | - | - |
| 0.1071 | 42 | 0.2206 | - | - | - | - | - | - | - | - | - |
| 0.1097 | 43 | 0.1694 | - | - | - | - | - | - | - | - | - |
| 0.1122 | 44 | 0.1864 | - | - | - | - | - | - | - | - | - |
| 0.1148 | 45 | 0.2126 | - | - | - | - | - | - | - | - | - |
| 0.1173 | 46 | 0.1589 | - | - | - | - | - | - | - | - | - |
| 0.1199 | 47 | 0.2539 | - | - | - | - | - | - | - | - | - |
| 0.1224 | 48 | 0.2403 | - | - | - | - | - | - | - | - | - |
| 0.125 | 49 | 0.1666 | - | - | - | - | - | - | - | - | - |
| 0.1276 | 50 | 0.1633 | - | - | - | - | - | - | - | - | - |
| 0.1301 | 51 | 0.2204 | - | - | - | - | - | - | - | - | - |
| 0.1327 | 52 | 0.0716 | - | - | - | - | - | - | - | - | - |
| 0.1352 | 53 | 0.1254 | - | - | - | - | - | - | - | - | - |
| 0.1378 | 54 | 0.3478 | - | - | - | - | - | - | - | - | - |
| 0.1403 | 55 | 0.2607 | - | - | - | - | - | - | - | - | - |
| 0.1429 | 56 | 0.2158 | - | - | - | - | - | - | - | - | - |
| 0.1454 | 57 | 0.2082 | - | - | - | - | - | - | - | - | - |
| 0.1480 | 58 | 0.2334 | - | - | - | - | - | - | - | - | - |
| 0.1505 | 59 | 0.2203 | 0.9447 | 0.2167 | 2.4175 | 0.1710 | 0.0204 | 0.2824 | 0.9129 | 0.6641 | 0.7343 |
| 0.1531 | 60 | 0.1368 | - | - | - | - | - | - | - | - | - |
| 0.1556 | 61 | 0.2153 | - | - | - | - | - | - | - | - | - |
| 0.1582 | 62 | 0.0711 | - | - | - | - | - | - | - | - | - |
| 0.1607 | 63 | 0.2255 | - | - | - | - | - | - | - | - | - |
| 0.1633 | 64 | 0.0982 | - | - | - | - | - | - | - | - | - |
| 0.1658 | 65 | 0.1388 | - | - | - | - | - | - | - | - | - |
| 0.1684 | 66 | 0.1797 | - | - | - | - | - | - | - | - | - |
| 0.1709 | 67 | 0.4173 | - | - | - | - | - | - | - | - | - |
| 0.1735 | 68 | 0.0102 | - | - | - | - | - | - | - | - | - |
| 0.1760 | 69 | 0.0634 | - | - | - | - | - | - | - | - | - |
| 0.1786 | 70 | 0.1956 | - | - | - | - | - | - | - | - | - |
| 0.1811 | 71 | 0.2188 | - | - | - | - | - | - | - | - | - |
| 0.1837 | 72 | 0.1399 | - | - | - | - | - | - | - | - | - |
| 0.1862 | 73 | 0.1489 | - | - | - | - | - | - | - | - | - |
| 0.1888 | 74 | 0.1567 | - | - | - | - | - | - | - | - | - |
| 0.1913 | 75 | 0.2404 | - | - | - | - | - | - | - | - | - |
| 0.1939 | 76 | 0.1295 | - | - | - | - | - | - | - | - | - |
| 0.1964 | 77 | 0.4541 | - | - | - | - | - | - | - | - | - |
| 0.1990 | 78 | 0.2364 | - | - | - | - | - | - | - | - | - |
| 0.2015 | 79 | 0.0929 | - | - | - | - | - | - | - | - | - |
| 0.2041 | 80 | 0.1699 | - | - | - | - | - | - | - | - | - |
| 0.2066 | 81 | 0.1846 | - | - | - | - | - | - | - | - | - |
| 0.2092 | 82 | 0.1126 | - | - | - | - | - | - | - | - | - |
| 0.2117 | 83 | 0.1151 | - | - | - | - | - | - | - | - | - |
| 0.2143 | 84 | 0.2015 | - | - | - | - | - | - | - | - | - |
| 0.2168 | 85 | 0.1028 | - | - | - | - | - | - | - | - | - |
| 0.2194 | 86 | 0.2284 | - | - | - | - | - | - | - | - | - |
| 0.2219 | 87 | 0.1368 | - | - | - | - | - | - | - | - | - |
| 0.2245 | 88 | 0.0836 | - | - | - | - | - | - | - | - | - |
| 0.2270 | 89 | 0.1276 | - | - | - | - | - | - | - | - | - |
| 0.2296 | 90 | 0.181 | - | - | - | - | - | - | - | - | - |
| 0.2321 | 91 | 0.1516 | - | - | - | - | - | - | - | - | - |
| 0.2347 | 92 | 0.1769 | - | - | - | - | - | - | - | - | - |
| 0.2372 | 93 | 0.1261 | - | - | - | - | - | - | - | - | - |
| 0.2398 | 94 | 0.2324 | - | - | - | - | - | - | - | - | - |
| 0.2423 | 95 | 0.1046 | - | - | - | - | - | - | - | - | - |
| 0.2449 | 96 | 0.1372 | - | - | - | - | - | - | - | - | - |
| 0.2474 | 97 | 0.0654 | - | - | - | - | - | - | - | - | - |
| 0.25 | 98 | 0.2279 | - | - | - | - | - | - | - | - | - |
| 0.2526 | 99 | 0.0807 | - | - | - | - | - | - | - | - | - |
| 0.2551 | 100 | 0.123 | - | - | - | - | - | - | - | - | - |
| 0.2577 | 101 | 0.1464 | - | - | - | - | - | - | - | - | - |
| 0.2602 | 102 | 0.0897 | - | - | - | - | - | - | - | - | - |
| 0.2628 | 103 | 0.1612 | - | - | - | - | - | - | - | - | - |
| 0.2653 | 104 | 0.1289 | - | - | - | - | - | - | - | - | - |
| 0.2679 | 105 | 0.7234 | - | - | - | - | - | - | - | - | - |
| 0.2704 | 106 | 0.1004 | - | - | - | - | - | - | - | - | - |
| 0.2730 | 107 | 0.1227 | - | - | - | - | - | - | - | - | - |
| 0.2755 | 108 | 0.2446 | - | - | - | - | - | - | - | - | - |
| 0.2781 | 109 | 0.1338 | - | - | - | - | - | - | - | - | - |
| 0.2806 | 110 | 0.0427 | - | - | - | - | - | - | - | - | - |
| 0.2832 | 111 | 0.1149 | - | - | - | - | - | - | - | - | - |
| 0.2857 | 112 | 0.1524 | - | - | - | - | - | - | - | - | - |
| 0.2883 | 113 | 0.1308 | - | - | - | - | - | - | - | - | - |
| 0.2908 | 114 | 0.192 | - | - | - | - | - | - | - | - | - |
| 0.2934 | 115 | 0.141 | - | - | - | - | - | - | - | - | - |
| 0.2959 | 116 | 0.1539 | - | - | - | - | - | - | - | - | - |
| 0.2985 | 117 | 0.1548 | - | - | - | - | - | - | - | - | - |
| 0.3010 | 118 | 0.1284 | 0.8682 | 0.1388 | 2.3304 | 0.1062 | 0.0200 | 0.2694 | 0.9151 | 0.6651 | 0.7364 |
| 0.3036 | 119 | 0.0939 | - | - | - | - | - | - | - | - | - |
| 0.3061 | 120 | 0.2675 | - | - | - | - | - | - | - | - | - |
| 0.3087 | 121 | 0.1542 | - | - | - | - | - | - | - | - | - |
| 0.3112 | 122 | 0.1347 | - | - | - | - | - | - | - | - | - |
| 0.3138 | 123 | 0.1285 | - | - | - | - | - | - | - | - | - |
| 0.3163 | 124 | 0.1025 | - | - | - | - | - | - | - | - | - |
| 0.3189 | 125 | 0.0879 | - | - | - | - | - | - | - | - | - |
| 0.3214 | 126 | 0.0446 | - | - | - | - | - | - | - | - | - |
| 0.3240 | 127 | 0.1739 | - | - | - | - | - | - | - | - | - |
| 0.3265 | 128 | 0.1309 | - | - | - | - | - | - | - | - | - |
| 0.3291 | 129 | 0.1737 | - | - | - | - | - | - | - | - | - |
| 0.3316 | 130 | 0.1063 | - | - | - | - | - | - | - | - | - |
| 0.3342 | 131 | 0.0568 | - | - | - | - | - | - | - | - | - |
| 0.3367 | 132 | 0.1966 | - | - | - | - | - | - | - | - | - |
| 0.3393 | 133 | 0.2336 | - | - | - | - | - | - | - | - | - |
| 0.3418 | 134 | 0.1716 | - | - | - | - | - | - | - | - | - |
| 0.3444 | 135 | 0.0979 | - | - | - | - | - | - | - | - | - |
| 0.3469 | 136 | 0.1319 | - | - | - | - | - | - | - | - | - |
| 0.3495 | 137 | 0.1058 | - | - | - | - | - | - | - | - | - |
| 0.3520 | 138 | 0.225 | - | - | - | - | - | - | - | - | - |
| 0.3546 | 139 | 0.1045 | - | - | - | - | - | - | - | - | - |
| 0.3571 | 140 | 0.1066 | - | - | - | - | - | - | - | - | - |
| 0.3597 | 141 | 0.1234 | - | - | - | - | - | - | - | - | - |
| 0.3622 | 142 | 0.1707 | - | - | - | - | - | - | - | - | - |
| 0.3648 | 143 | 0.1204 | - | - | - | - | - | - | - | - | - |
| 0.3673 | 144 | 0.2086 | - | - | - | - | - | - | - | - | - |
| 0.3699 | 145 | 0.0982 | - | - | - | - | - | - | - | - | - |
| 0.3724 | 146 | 0.0937 | - | - | - | - | - | - | - | - | - |
| 0.375 | 147 | 0.1763 | - | - | - | - | - | - | - | - | - |
| 0.3776 | 148 | 0.0601 | - | - | - | - | - | - | - | - | - |
| 0.3801 | 149 | 0.1354 | - | - | - | - | - | - | - | - | - |
| 0.3827 | 150 | 0.1135 | - | - | - | - | - | - | - | - | - |
| 0.3852 | 151 | 0.2146 | - | - | - | - | - | - | - | - | - |
| 0.3878 | 152 | 0.0868 | - | - | - | - | - | - | - | - | - |
| 0.3903 | 153 | 0.2428 | - | - | - | - | - | - | - | - | - |
| 0.3929 | 154 | 0.0582 | - | - | - | - | - | - | - | - | - |
| 0.3954 | 155 | 0.1299 | - | - | - | - | - | - | - | - | - |
| 0.3980 | 156 | 0.0911 | - | - | - | - | - | - | - | - | - |
| 0.4005 | 157 | 0.1184 | - | - | - | - | - | - | - | - | - |
| 0.4031 | 158 | 0.0692 | - | - | - | - | - | - | - | - | - |
| 0.4056 | 159 | 0.1228 | - | - | - | - | - | - | - | - | - |
| 0.4082 | 160 | 0.0574 | - | - | - | - | - | - | - | - | - |
| 0.4107 | 161 | 0.0822 | - | - | - | - | - | - | - | - | - |
| 0.4133 | 162 | 0.1071 | - | - | - | - | - | - | - | - | - |
| 0.4158 | 163 | 0.0544 | - | - | - | - | - | - | - | - | - |
| 0.4184 | 164 | 0.1261 | - | - | - | - | - | - | - | - | - |
| 0.4209 | 165 | 0.094 | - | - | - | - | - | - | - | - | - |
| 0.4235 | 166 | 0.1539 | - | - | - | - | - | - | - | - | - |
| 0.4260 | 167 | 0.045 | - | - | - | - | - | - | - | - | - |
| 0.4286 | 168 | 0.1074 | - | - | - | - | - | - | - | - | - |
| 0.4311 | 169 | 0.1626 | - | - | - | - | - | - | - | - | - |
| 0.4337 | 170 | 0.1337 | - | - | - | - | - | - | - | - | - |
| 0.4362 | 171 | 0.1737 | - | - | - | - | - | - | - | - | - |
| 0.4388 | 172 | 0.104 | - | - | - | - | - | - | - | - | - |
| 0.4413 | 173 | 0.0989 | - | - | - | - | - | - | - | - | - |
| 0.4439 | 174 | 0.2015 | - | - | - | - | - | - | - | - | - |
| 0.4464 | 175 | 0.1364 | - | - | - | - | - | - | - | - | - |
| 0.4490 | 176 | 0.0968 | - | - | - | - | - | - | - | - | - |
| 0.4515 | 177 | 0.0868 | 0.8198 | 0.0984 | 2.3936 | 0.0804 | 0.0204 | 0.2730 | 0.9166 | 0.6676 | 0.7384 |
| 0.4541 | 178 | 0.0538 | - | - | - | - | - | - | - | - | - |
| 0.4566 | 179 | 0.0855 | - | - | - | - | - | - | - | - | - |
| 0.4592 | 180 | 0.1492 | - | - | - | - | - | - | - | - | - |
| 0.4617 | 181 | 0.0799 | - | - | - | - | - | - | - | - | - |
| 0.4643 | 182 | 0.0979 | - | - | - | - | - | - | - | - | - |
| 0.4668 | 183 | 0.087 | - | - | - | - | - | - | - | - | - |
| 0.4694 | 184 | 0.1763 | - | - | - | - | - | - | - | - | - |
| 0.4719 | 185 | 0.1646 | - | - | - | - | - | - | - | - | - |
| 0.4745 | 186 | 0.1483 | - | - | - | - | - | - | - | - | - |
| 0.4770 | 187 | 0.1098 | - | - | - | - | - | - | - | - | - |
| 0.4796 | 188 | 0.6778 | - | - | - | - | - | - | - | - | - |
| 0.4821 | 189 | 0.116 | - | - | - | - | - | - | - | - | - |
| 0.4847 | 190 | 0.1465 | - | - | - | - | - | - | - | - | - |
| 0.4872 | 191 | 0.1113 | - | - | - | - | - | - | - | - | - |
| 0.4898 | 192 | 0.1467 | - | - | - | - | - | - | - | - | - |
| 0.4923 | 193 | 0.0744 | - | - | - | - | - | - | - | - | - |
| 0.4949 | 194 | 0.1342 | - | - | - | - | - | - | - | - | - |
| 0.4974 | 195 | 0.0979 | - | - | - | - | - | - | - | - | - |
| 0.5 | 196 | 0.1969 | - | - | - | - | - | - | - | - | - |
| 0.5026 | 197 | 0.1349 | - | - | - | - | - | - | - | - | - |
| 0.5051 | 198 | 0.1122 | - | - | - | - | - | - | - | - | - |
| 0.5077 | 199 | 0.1032 | - | - | - | - | - | - | - | - | - |
| 0.5102 | 200 | 0.0757 | - | - | - | - | - | - | - | - | - |
| 0.5128 | 201 | 0.5715 | - | - | - | - | - | - | - | - | - |
| 0.5153 | 202 | 0.0359 | - | - | - | - | - | - | - | - | - |
| 0.5179 | 203 | 0.0845 | - | - | - | - | - | - | - | - | - |
| 0.5204 | 204 | 0.0776 | - | - | - | - | - | - | - | - | - |
| 0.5230 | 205 | 0.154 | - | - | - | - | - | - | - | - | - |
| 0.5255 | 206 | 0.0553 | - | - | - | - | - | - | - | - | - |
| 0.5281 | 207 | 0.0871 | - | - | - | - | - | - | - | - | - |
| 0.5306 | 208 | 0.1214 | - | - | - | - | - | - | - | - | - |
| 0.5332 | 209 | 0.1983 | - | - | - | - | - | - | - | - | - |
| 0.5357 | 210 | 0.1244 | - | - | - | - | - | - | - | - | - |
| 0.5383 | 211 | 0.0517 | - | - | - | - | - | - | - | - | - |
| 0.5408 | 212 | 0.1522 | - | - | - | - | - | - | - | - | - |
| 0.5434 | 213 | 0.0749 | - | - | - | - | - | - | - | - | - |
| 0.5459 | 214 | 0.0966 | - | - | - | - | - | - | - | - | - |
| 0.5485 | 215 | 0.1224 | - | - | - | - | - | - | - | - | - |
| 0.5510 | 216 | 0.2397 | - | - | - | - | - | - | - | - | - |
| 0.5536 | 217 | 0.0847 | - | - | - | - | - | - | - | - | - |
| 0.5561 | 218 | 0.0252 | - | - | - | - | - | - | - | - | - |
| 0.5587 | 219 | 0.1269 | - | - | - | - | - | - | - | - | - |
| 0.5612 | 220 | 0.1205 | - | - | - | - | - | - | - | - | - |
| 0.5638 | 221 | 0.046 | - | - | - | - | - | - | - | - | - |
| 0.5663 | 222 | 0.0701 | - | - | - | - | - | - | - | - | - |
| 0.5689 | 223 | 0.1206 | - | - | - | - | - | - | - | - | - |
| 0.5714 | 224 | 0.059 | - | - | - | - | - | - | - | - | - |
| 0.5740 | 225 | 0.1602 | - | - | - | - | - | - | - | - | - |
| 0.5765 | 226 | 0.098 | - | - | - | - | - | - | - | - | - |
| 0.5791 | 227 | 0.0658 | - | - | - | - | - | - | - | - | - |
| 0.5816 | 228 | 0.0755 | - | - | - | - | - | - | - | - | - |
| 0.5842 | 229 | 0.1011 | - | - | - | - | - | - | - | - | - |
| 0.5867 | 230 | 0.1612 | - | - | - | - | - | - | - | - | - |
| 0.5893 | 231 | 0.0268 | - | - | - | - | - | - | - | - | - |
| 0.5918 | 232 | 0.0478 | - | - | - | - | - | - | - | - | - |
| 0.5944 | 233 | 0.0741 | - | - | - | - | - | - | - | - | - |
| 0.5969 | 234 | 0.0985 | - | - | - | - | - | - | - | - | - |
| 0.5995 | 235 | 0.0736 | - | - | - | - | - | - | - | - | - |
| 0.6020 | 236 | 0.1142 | 0.7994 | 0.1305 | 2.3555 | 0.0615 | 0.0213 | 0.2741 | 0.9172 | 0.6767 | 0.7332 |
| 0.6046 | 237 | 0.1271 | - | - | - | - | - | - | - | - | - |
| 0.6071 | 238 | 0.061 | - | - | - | - | - | - | - | - | - |
| 0.6097 | 239 | 0.0756 | - | - | - | - | - | - | - | - | - |
| 0.6122 | 240 | 0.0948 | - | - | - | - | - | - | - | - | - |
| 0.6148 | 241 | 0.1604 | - | - | - | - | - | - | - | - | - |
| 0.6173 | 242 | 0.0668 | - | - | - | - | - | - | - | - | - |
| 0.6199 | 243 | 0.0386 | - | - | - | - | - | - | - | - | - |
| 0.6224 | 244 | 0.1708 | - | - | - | - | - | - | - | - | - |
| 0.625 | 245 | 0.0829 | - | - | - | - | - | - | - | - | - |
| 0.6276 | 246 | 0.1878 | - | - | - | - | - | - | - | - | - |
| 0.6301 | 247 | 0.1039 | - | - | - | - | - | - | - | - | - |
| 0.6327 | 248 | 0.064 | - | - | - | - | - | - | - | - | - |
| 0.6352 | 249 | 0.106 | - | - | - | - | - | - | - | - | - |
| 0.6378 | 250 | 0.1597 | - | - | - | - | - | - | - | - | - |
| 0.6403 | 251 | 0.4868 | - | - | - | - | - | - | - | - | - |
| 0.6429 | 252 | 0.1583 | - | - | - | - | - | - | - | - | - |
| 0.6454 | 253 | 0.0839 | - | - | - | - | - | - | - | - | - |
| 0.6480 | 254 | 0.071 | - | - | - | - | - | - | - | - | - |
| 0.6505 | 255 | 0.1673 | - | - | - | - | - | - | - | - | - |
| 0.6531 | 256 | 0.5533 | - | - | - | - | - | - | - | - | - |
| 0.6556 | 257 | 0.1301 | - | - | - | - | - | - | - | - | - |
| 0.6582 | 258 | 0.085 | - | - | - | - | - | - | - | - | - |
| 0.6607 | 259 | 0.0545 | - | - | - | - | - | - | - | - | - |
| 0.6633 | 260 | 0.0408 | - | - | - | - | - | - | - | - | - |
| 0.6658 | 261 | 0.6112 | - | - | - | - | - | - | - | - | - |
| 0.6684 | 262 | 0.1493 | - | - | - | - | - | - | - | - | - |
| 0.6709 | 263 | 0.1581 | - | - | - | - | - | - | - | - | - |
| 0.6735 | 264 | 0.2356 | - | - | - | - | - | - | - | - | - |
| 0.6760 | 265 | 0.1972 | - | - | - | - | - | - | - | - | - |
| 0.6786 | 266 | 0.0527 | - | - | - | - | - | - | - | - | - |
| 0.6811 | 267 | 0.1335 | - | - | - | - | - | - | - | - | - |
| 0.6837 | 268 | 0.0674 | - | - | - | - | - | - | - | - | - |
| 0.6862 | 269 | 0.0656 | - | - | - | - | - | - | - | - | - |
| 0.6888 | 270 | 0.0622 | - | - | - | - | - | - | - | - | - |
| 0.6913 | 271 | 0.2093 | - | - | - | - | - | - | - | - | - |
| 0.6939 | 272 | 0.0605 | - | - | - | - | - | - | - | - | - |
| 0.6964 | 273 | 0.117 | - | - | - | - | - | - | - | - | - |
| 0.6990 | 274 | 0.0991 | - | - | - | - | - | - | - | - | - |
| 0.7015 | 275 | 0.1294 | - | - | - | - | - | - | - | - | - |
| 0.7041 | 276 | 0.0482 | - | - | - | - | - | - | - | - | - |
| 0.7066 | 277 | 0.062 | - | - | - | - | - | - | - | - | - |
| 0.7092 | 278 | 0.1289 | - | - | - | - | - | - | - | - | - |
| 0.7117 | 279 | 0.103 | - | - | - | - | - | - | - | - | - |
| 0.7143 | 280 | 0.1764 | - | - | - | - | - | - | - | - | - |
| 0.7168 | 281 | 0.1517 | - | - | - | - | - | - | - | - | - |
| 0.7194 | 282 | 0.128 | - | - | - | - | - | - | - | - | - |
| 0.7219 | 283 | 0.1119 | - | - | - | - | - | - | - | - | - |
| 0.7245 | 284 | 0.0813 | - | - | - | - | - | - | - | - | - |
| 0.7270 | 285 | 0.0525 | - | - | - | - | - | - | - | - | - |
| 0.7296 | 286 | 0.1221 | - | - | - | - | - | - | - | - | - |
| 0.7321 | 287 | 0.0645 | - | - | - | - | - | - | - | - | - |
| 0.7347 | 288 | 0.1155 | - | - | - | - | - | - | - | - | - |
| 0.7372 | 289 | 0.0854 | - | - | - | - | - | - | - | - | - |
| 0.7398 | 290 | 0.0759 | - | - | - | - | - | - | - | - | - |
| 0.7423 | 291 | 0.0795 | - | - | - | - | - | - | - | - | - |
| 0.7449 | 292 | 0.0842 | - | - | - | - | - | - | - | - | - |
| 0.7474 | 293 | 0.1039 | - | - | - | - | - | - | - | - | - |
| 0.75 | 294 | 0.0525 | - | - | - | - | - | - | - | - | - |
| 0.7526 | 295 | 0.0807 | 0.8120 | 0.0891 | 2.4979 | 0.0711 | 0.0203 | 0.2989 | 0.9157 | 0.6781 | 0.7280 |
| 0.7551 | 296 | 0.059 | - | - | - | - | - | - | - | - | - |
| 0.7577 | 297 | 0.1255 | - | - | - | - | - | - | - | - | - |
| 0.7602 | 298 | 0.075 | - | - | - | - | - | - | - | - | - |
| 0.7628 | 299 | 0.0668 | - | - | - | - | - | - | - | - | - |
| 0.7653 | 300 | 0.1193 | - | - | - | - | - | - | - | - | - |
| 0.7679 | 301 | 0.0539 | - | - | - | - | - | - | - | - | - |
| 0.7704 | 302 | 0.0465 | - | - | - | - | - | - | - | - | - |
| 0.7730 | 303 | 0.0324 | - | - | - | - | - | - | - | - | - |
| 0.7755 | 304 | 0.0797 | - | - | - | - | - | - | - | - | - |
| 0.7781 | 305 | 0.1331 | - | - | - | - | - | - | - | - | - |
| 0.7806 | 306 | 0.0831 | - | - | - | - | - | - | - | - | - |
| 0.7832 | 307 | 0.1194 | - | - | - | - | - | - | - | - | - |
| 0.7857 | 308 | 0.1545 | - | - | - | - | - | - | - | - | - |
| 0.7883 | 309 | 0.1273 | - | - | - | - | - | - | - | - | - |
| 0.7908 | 310 | 0.0925 | - | - | - | - | - | - | - | - | - |
| 0.7934 | 311 | 0.1217 | - | - | - | - | - | - | - | - | - |
| 0.7959 | 312 | 0.0549 | - | - | - | - | - | - | - | - | - |
| 0.7985 | 313 | 0.1441 | - | - | - | - | - | - | - | - | - |
| 0.8010 | 314 | 0.1327 | - | - | - | - | - | - | - | - | - |
| 0.8036 | 315 | 0.0495 | - | - | - | - | - | - | - | - | - |
| 0.8061 | 316 | 0.0473 | - | - | - | - | - | - | - | - | - |
| 0.8087 | 317 | 0.1109 | - | - | - | - | - | - | - | - | - |
| 0.8112 | 318 | 0.1102 | - | - | - | - | - | - | - | - | - |
| 0.8138 | 319 | 0.0674 | - | - | - | - | - | - | - | - | - |
| 0.8163 | 320 | 0.1076 | - | - | - | - | - | - | - | - | - |
| 0.8189 | 321 | 0.076 | - | - | - | - | - | - | - | - | - |
| 0.8214 | 322 | 0.0899 | - | - | - | - | - | - | - | - | - |
| 0.8240 | 323 | 0.0539 | - | - | - | - | - | - | - | - | - |
| 0.8265 | 324 | 0.0516 | - | - | - | - | - | - | - | - | - |
| 0.8291 | 325 | 0.0607 | - | - | - | - | - | - | - | - | - |
| 0.8316 | 326 | 0.1574 | - | - | - | - | - | - | - | - | - |
| 0.8342 | 327 | 0.1324 | - | - | - | - | - | - | - | - | - |
| 0.8367 | 328 | 0.094 | - | - | - | - | - | - | - | - | - |
| 0.8393 | 329 | 0.0861 | - | - | - | - | - | - | - | - | - |
| 0.8418 | 330 | 0.0991 | - | - | - | - | - | - | - | - | - |
| 0.8444 | 331 | 0.03 | - | - | - | - | - | - | - | - | - |
| 0.8469 | 332 | 0.0785 | - | - | - | - | - | - | - | - | - |
| 0.8495 | 333 | 0.1042 | - | - | - | - | - | - | - | - | - |
| 0.8520 | 334 | 0.0184 | - | - | - | - | - | - | - | - | - |
| 0.8546 | 335 | 0.033 | - | - | - | - | - | - | - | - | - |
| 0.8571 | 336 | 0.0593 | - | - | - | - | - | - | - | - | - |
| 0.8597 | 337 | 0.0798 | - | - | - | - | - | - | - | - | - |
| 0.8622 | 338 | 0.0746 | - | - | - | - | - | - | - | - | - |
| 0.8648 | 339 | 0.0629 | - | - | - | - | - | - | - | - | - |
| 0.8673 | 340 | 0.0401 | - | - | - | - | - | - | - | - | - |
| 0.8699 | 341 | 0.2941 | - | - | - | - | - | - | - | - | - |
| 0.8724 | 342 | 0.0796 | - | - | - | - | - | - | - | - | - |
| 0.875 | 343 | 0.0661 | - | - | - | - | - | - | - | - | - |
| 0.8776 | 344 | 0.1058 | - | - | - | - | - | - | - | - | - |
| 0.8801 | 345 | 0.1774 | - | - | - | - | - | - | - | - | - |
| 0.8827 | 346 | 0.1408 | - | - | - | - | - | - | - | - | - |
| 0.8852 | 347 | 0.0373 | - | - | - | - | - | - | - | - | - |
| 0.8878 | 348 | 0.0758 | - | - | - | - | - | - | - | - | - |
| 0.8903 | 349 | 0.0997 | - | - | - | - | - | - | - | - | - |
| 0.8929 | 350 | 0.045 | - | - | - | - | - | - | - | - | - |
| 0.8954 | 351 | 0.0246 | - | - | - | - | - | - | - | - | - |
| 0.8980 | 352 | 0.0645 | - | - | - | - | - | - | - | - | - |
| 0.9005 | 353 | 0.1046 | - | - | - | - | - | - | - | - | - |
| 0.9031 | 354 | 0.0857 | 0.8229 | 0.1095 | 2.6739 | 0.0849 | 0.0206 | 0.3026 | 0.9160 | 0.6698 | 0.7347 |
| 0.9056 | 355 | 0.1487 | - | - | - | - | - | - | - | - | - |
| 0.9082 | 356 | 0.0759 | - | - | - | - | - | - | - | - | - |
| 0.9107 | 357 | 0.1082 | - | - | - | - | - | - | - | - | - |
| 0.9133 | 358 | 0.1135 | - | - | - | - | - | - | - | - | - |
| 0.9158 | 359 | 0.1303 | - | - | - | - | - | - | - | - | - |
| 0.9184 | 360 | 0.0862 | - | - | - | - | - | - | - | - | - |
| 0.9209 | 361 | 0.0763 | - | - | - | - | - | - | - | - | - |
| 0.9235 | 362 | 0.0839 | - | - | - | - | - | - | - | - | - |
| 0.9260 | 363 | 0.0715 | - | - | - | - | - | - | - | - | - |
| 0.9286 | 364 | 0.0517 | - | - | - | - | - | - | - | - | - |
| 0.9311 | 365 | 0.0902 | - | - | - | - | - | - | - | - | - |
| 0.9337 | 366 | 0.0296 | - | - | - | - | - | - | - | - | - |
| 0.9362 | 367 | 0.1111 | - | - | - | - | - | - | - | - | - |
| 0.9388 | 368 | 0.0777 | - | - | - | - | - | - | - | - | - |
| 0.9413 | 369 | 0.0655 | - | - | - | - | - | - | - | - | - |
| 0.9439 | 370 | 0.0833 | - | - | - | - | - | - | - | - | - |
| 0.9464 | 371 | 0.0711 | - | - | - | - | - | - | - | - | - |
| 0.9490 | 372 | 0.0473 | - | - | - | - | - | - | - | - | - |
| 0.9515 | 373 | 0.0376 | - | - | - | - | - | - | - | - | - |
| 0.9541 | 374 | 0.0859 | - | - | - | - | - | - | - | - | - |
| 0.9566 | 375 | 0.0958 | - | - | - | - | - | - | - | - | - |
| 0.9592 | 376 | 0.0709 | - | - | - | - | - | - | - | - | - |
| 0.9617 | 377 | 0.0674 | - | - | - | - | - | - | - | - | - |
| 0.9643 | 378 | 0.0601 | - | - | - | - | - | - | - | - | - |
| 0.9668 | 379 | 0.0953 | - | - | - | - | - | - | - | - | - |
| 0.9694 | 380 | 0.069 | - | - | - | - | - | - | - | - | - |
| 0.9719 | 381 | 0.0953 | - | - | - | - | - | - | - | - | - |
| 0.9745 | 382 | 0.1069 | - | - | - | - | - | - | - | - | - |
| 0.9770 | 383 | 0.149 | - | - | - | - | - | - | - | - | - |
| 0.9796 | 384 | 0.1037 | - | - | - | - | - | - | - | - | - |
| 0.9821 | 385 | 0.0856 | - | - | - | - | - | - | - | - | - |
| 0.9847 | 386 | 0.0465 | - | - | - | - | - | - | - | - | - |
| 0.9872 | 387 | 0.1756 | - | - | - | - | - | - | - | - | - |
| 0.9898 | 388 | 0.0972 | - | - | - | - | - | - | - | - | - |
| 0.9923 | 389 | 0.0868 | - | - | - | - | - | - | - | - | - |
</details>
### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.51.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.5.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |