bpiyush commited on
Commit
2d4c714
·
verified ·
1 Parent(s): 630539d

Upload demo_usage.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. demo_usage.py +43 -4
demo_usage.py CHANGED
@@ -1,9 +1,9 @@
1
  import torch
2
  from termcolor import colored
3
- from modeling_tara import TARA, read_frames_decord
4
 
5
 
6
- def main():
7
  print(colored("="*60, 'yellow'))
8
  print(colored("TARA Model Demo", 'yellow', attrs=['bold']))
9
  print(colored("="*60, 'yellow'))
@@ -11,7 +11,7 @@ def main():
11
  # Load model from current directory
12
  print(colored("\n[1/3] Loading model...", 'cyan'))
13
  model = TARA.from_pretrained(
14
- ".", # Load from current directory
15
  device_map='auto',
16
  torch_dtype=torch.bfloat16,
17
  )
@@ -63,6 +63,40 @@ def main():
63
  print(colored("✓ Similarities computed!", 'green'))
64
  for i, txt in enumerate(text):
65
  print(f" '{txt}': {similarities[0, i].item():.4f}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66
 
67
  print(colored("\n" + "="*60, 'yellow'))
68
  print(colored("Demo completed successfully! 🎉", 'green', attrs=['bold']))
@@ -70,4 +104,9 @@ def main():
70
 
71
 
72
  if __name__ == "__main__":
73
- main()
 
 
 
 
 
 
1
  import torch
2
  from termcolor import colored
3
+ from modeling_tara import TARA, read_frames_decord, read_images_decord
4
 
5
 
6
+ def main(model_path: str = "."):
7
  print(colored("="*60, 'yellow'))
8
  print(colored("TARA Model Demo", 'yellow', attrs=['bold']))
9
  print(colored("="*60, 'yellow'))
 
11
  # Load model from current directory
12
  print(colored("\n[1/3] Loading model...", 'cyan'))
13
  model = TARA.from_pretrained(
14
+ model_path, # Load from current directory
15
  device_map='auto',
16
  torch_dtype=torch.bfloat16,
17
  )
 
63
  print(colored("✓ Similarities computed!", 'green'))
64
  for i, txt in enumerate(text):
65
  print(f" '{txt}': {similarities[0, i].item():.4f}")
66
+ print("-" * 100)
67
+
68
+
69
+ # Negation example: a negation in text query should result
70
+ # in retrieval of images without the neg. object in the query
71
+ image_paths = [
72
+ './assets/cat.png',
73
+ './assets/dog+cat.png',
74
+ ]
75
+ image_tensors = read_images_decord(image_paths)
76
+ with torch.no_grad():
77
+ image_embs = model.encode_vision(image_tensors.to(model.model.device)).cpu().float()
78
+ image_embs = torch.nn.functional.normalize(image_embs, dim=-1)
79
+ print(f"Image embedding shape: {image_embs.shape}")
80
+
81
+ texts = ['an image of a cat but there is no dog in it']
82
+ with torch.no_grad():
83
+ text_embs = model.encode_text(texts).cpu().float()
84
+ text_embs = torch.nn.functional.normalize(text_embs, dim=-1)
85
+ print("Text query: ", texts)
86
+ sim = text_embs @ image_embs.t()
87
+ print(f"Text-Image similarity: {sim}")
88
+ print("-" * 100)
89
+
90
+ texts = ['an image of a cat and a dog together']
91
+ with torch.no_grad():
92
+ text_embs = model.encode_text(texts).cpu().float()
93
+ text_embs = torch.nn.functional.normalize(text_embs, dim=-1)
94
+ print("Text query: ", texts)
95
+ sim = text_embs @ image_embs.t()
96
+ print(f"Text-Image similarity: {sim}")
97
+ print("-" * 100)
98
+ import ipdb; ipdb.set_trace()
99
+
100
 
101
  print(colored("\n" + "="*60, 'yellow'))
102
  print(colored("Demo completed successfully! 🎉", 'green', attrs=['bold']))
 
104
 
105
 
106
  if __name__ == "__main__":
107
+ import argparse
108
+ parser = argparse.ArgumentParser()
109
+ parser.add_argument("--model_path", type=str, default=".")
110
+ args = parser.parse_args()
111
+
112
+ main(args.model_path)