File size: 13,579 Bytes
90bc656 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
import os
import torch
import torch.nn as nn
import torchaudio
from transformers import LlamaForCausalLM, WhisperModel, AutoTokenizer
from huggingface_hub import hf_hub_download
import json
class FrozenModelWrapper:
def __init__(self, model):
self.model = model
for param in self.model.parameters():
param.requires_grad = False
def forward(self, *args, **kwargs):
with torch.no_grad():
return self.model(*args, **kwargs)
def to(self, device):
self.model = self.model.to(device)
return self
class AudioProjector(nn.Module):
def __init__(self, input_dim, output_dim, hidden_dim=None):
super().__init__()
if hidden_dim is None:
hidden_dim = (input_dim + output_dim) // 2
self.layers = nn.Sequential(
nn.Linear(input_dim, hidden_dim),
nn.GELU(),
nn.Linear(hidden_dim, output_dim),
nn.LayerNorm(output_dim)
)
def forward(self, x):
return self.layers(x)
class LoRALayer(nn.Module):
def __init__(self, in_dim, out_dim, rank=8, alpha=16):
super().__init__()
self.lora_A = nn.Parameter(torch.zeros(rank, in_dim))
self.lora_B = nn.Parameter(torch.randn(out_dim, rank) * 0.01)
self.rank = rank
self.alpha = alpha
self.scaling = alpha / rank
def forward(self, x):
return (x @ (self.lora_B @ self.lora_A).T) * self.scaling
def lora_forward_hook(module, input, output, lora_layer):
# Add LoRA output to the original linear layer output
return output + lora_layer(input[0])
class AudioLLM(nn.Module):
def __init__(self, llama_model, whisper_encoder, projector, lora_layers, tokenizer):
super().__init__()
self.llama = FrozenModelWrapper(llama_model)
self.whisper_encoder = FrozenModelWrapper(whisper_encoder)
self.projector = projector
self.lora_layers = lora_layers
self.tokenizer = tokenizer
# Register forward hooks to apply LoRA
self.hooks = []
for name, module in self.llama.model.named_modules():
if name in self.lora_layers:
hook = module.register_forward_hook(
lambda mod, inp, out, n=name: lora_forward_hook(mod, inp, out, self.lora_layers[n])
)
self.hooks.append(hook)
self.audio_start_token = "<audio>"
self.audio_end_token = "</audio>"
def _process_audio(self, audio_path, max_audio_length=30, sample_rate=16000):
# Process audio file for model input
if not os.path.exists(audio_path):
raise FileNotFoundError(f"Audio file not found: {audio_path}")
waveform, file_sample_rate = torchaudio.load(audio_path)
max_frames = max_audio_length * sample_rate
# Trim or pad audio
if waveform.shape[1] > max_frames:
waveform = waveform[:, :max_frames]
elif waveform.shape[1] < max_frames:
pad_len = max_frames - waveform.shape[1]
waveform = nn.functional.pad(waveform, (0, pad_len))
# Convert to mono if stereo
if waveform.shape[0] > 1:
waveform = torch.mean(waveform, dim=0, keepdim=True)
# Resample if needed
if file_sample_rate != sample_rate:
resampler = torchaudio.transforms.Resample(
orig_freq=file_sample_rate, new_freq=sample_rate
)
waveform = resampler(waveform)
# Add batch dimension
waveform = waveform.unsqueeze(0)
return waveform
def generate(self,
input_ids=None,
attention_mask=None,
audio_features=None,
max_new_tokens=256,
temperature=0.7,
top_p=0.9,
do_sample=True,
**kwargs):
# Generate text with optional audio context
device = next(self.llama.model.parameters()).device
# Move inputs to the model's device
if input_ids is not None:
input_ids = input_ids.to(device)
if attention_mask is not None:
attention_mask = attention_mask.to(device)
if audio_features is not None:
audio_features = audio_features.to(device)
# Get the initial text embeddings
text_embeddings = self.llama.model.model.embed_tokens(input_ids)
# Process audio if provided
if audio_features is not None:
audio_features = audio_features.squeeze(1)
with torch.no_grad():
whisper_output = self.whisper_encoder.model(audio_features)
whisper_embeddings = whisper_output.last_hidden_state
projected_audio = self.projector(whisper_embeddings)
# Get embeddings for audio delimiter tokens
audio_start_id = self.tokenizer.convert_tokens_to_ids(self.audio_start_token)
audio_end_id = self.tokenizer.convert_tokens_to_ids(self.audio_end_token)
audio_start_tokens = torch.tensor([[audio_start_id]], device=device)
audio_end_tokens = torch.tensor([[audio_end_id]], device=device)
audio_start_embedding = self.llama.model.model.embed_tokens(audio_start_tokens)
audio_end_embedding = self.llama.model.model.embed_tokens(audio_end_tokens)
# Concatenate: <audio> + audio_embeddings + </audio> + text_embeddings
combined_embeddings = torch.cat([
audio_start_embedding,
projected_audio,
audio_end_embedding,
text_embeddings
], dim=1)
# Create extended attention mask that includes audio tokens
batch_size, text_seq_len = attention_mask.shape
audio_seq_len = combined_embeddings.shape[1] - text_embeddings.shape[1]
audio_attention = torch.ones(batch_size, audio_seq_len, device=device)
combined_attention_mask = torch.cat([audio_attention, attention_mask], dim=1)
else:
combined_embeddings = text_embeddings
combined_attention_mask = attention_mask
# Set generation parameters
generation_config = {
"max_new_tokens": max_new_tokens,
"temperature": temperature,
"top_p": top_p,
"do_sample": do_sample,
"pad_token_id": self.tokenizer.pad_token_id,
"bos_token_id": self.tokenizer.bos_token_id,
"eos_token_id": self.tokenizer.eos_token_id,
}
# Add any additional kwargs
generation_config.update(kwargs)
# Generate tokens
with torch.no_grad():
outputs = self.llama.model.generate(
inputs_embeds=combined_embeddings,
attention_mask=combined_attention_mask,
**generation_config
)
# Calculate where the actual generated content starts
input_length = input_ids.shape[1]
if audio_features is not None:
input_length += audio_seq_len
# Get only the newly generated tokens
generated_tokens = outputs[0, input_length:]
# Decode to text
generated_text = self.tokenizer.decode(generated_tokens, skip_special_tokens=True)
return generated_text
def load_audio_llm(repo_id, llama_path=None, whisper_path=None, device="cuda"):
# Load AudioLLM model from Hugging Face Hub
# Download config and weights
config_file = hf_hub_download(repo_id=repo_id, filename="config.json")
projector_file = hf_hub_download(repo_id=repo_id, filename="projector.pt")
lora_file = hf_hub_download(repo_id=repo_id, filename="lora_layers.pt")
# Load configuration
with open(config_file, "r") as f:
config = json.load(f)
# Use provided model paths or fall back to config
llama_path = llama_path or config["llama_model_path"]
whisper_path = whisper_path or config["whisper_model_path"]
lora_rank = config.get("lora_rank", 64)
print(f"Loading LLaMA model from {llama_path}...")
llama = LlamaForCausalLM.from_pretrained(llama_path, device_map=device)
print(f"Loading Whisper model from {whisper_path}...")
whisper_encoder = WhisperModel.from_pretrained(whisper_path, device_map=device).encoder
# Load tokenizer
try:
tokenizer_path = os.path.join(os.path.dirname(config_file), "tokenizer")
if os.path.exists(tokenizer_path):
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
print("Loaded tokenizer from repository")
else:
tokenizer = AutoTokenizer.from_pretrained(llama_path)
tokenizer.pad_token = tokenizer.eos_token
# Add special tokens for audio
audio_tokens = {"additional_special_tokens": ["<audio>", "</audio>"]}
tokenizer.add_special_tokens(audio_tokens)
print("Added special tokens to tokenizer")
except Exception as e:
print(f"Error loading tokenizer: {e}. Falling back to base tokenizer.")
tokenizer = AutoTokenizer.from_pretrained(llama_path)
tokenizer.pad_token = tokenizer.eos_token
# Resize token embeddings if needed
llama.resize_token_embeddings(len(tokenizer))
# Load projector state
projector_state = torch.load(projector_file, map_location=device)
# Determine dimensions from state dict
first_layer = list(projector_state.keys())[0]
if "layers.0.weight" in projector_state:
input_dim = projector_state["layers.0.weight"].shape[1]
output_dim = projector_state["layers.2.weight"].shape[0]
else:
# Approximate based on typical Whisper and LLaMA dimensions
input_dim = whisper_encoder.config.d_model # typically 1024 for large Whisper
output_dim = llama.config.hidden_size # typically 4096 for 7B LLaMA
# Create and load projector
projector = AudioProjector(input_dim, output_dim)
projector.load_state_dict(projector_state)
projector = projector.to(device)
# Load LoRA layers
lora_layers_state = torch.load(lora_file, map_location=device)
lora_layers = {}
# Reinstantiate LoRA layers
for name, state_dict in lora_layers_state.items():
# Extract dimensions from state dict
lora_A = state_dict["lora_A"]
lora_B = state_dict["lora_B"]
rank = lora_A.shape[0]
in_dim = lora_A.shape[1]
out_dim = lora_B.shape[0]
# Create layer
lora_layer = LoRALayer(in_dim, out_dim, rank=rank)
lora_layer.load_state_dict(state_dict)
lora_layers[name] = lora_layer.to(device)
# Create model
model = AudioLLM(
llama_model=llama,
whisper_encoder=whisper_encoder,
projector=projector,
lora_layers=lora_layers,
tokenizer=tokenizer
)
return model
def transcribe_and_generate(model, audio_path, prompt="", max_new_tokens=256, temperature=0.7):
# Process audio and generate text response
device = next(model.llama.model.parameters()).device
# Process audio
audio_features = model._process_audio(audio_path)
audio_features = audio_features.to(device)
# Tokenize prompt
encoded_prompt = model.tokenizer(
prompt,
return_tensors="pt",
padding="max_length",
max_length=512,
truncation=True
)
input_ids = encoded_prompt.input_ids
attention_mask = encoded_prompt.attention_mask
# Generate response
response = model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
audio_features=audio_features,
max_new_tokens=max_new_tokens,
temperature=temperature
)
return response
# Example usage
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="AudioLLM Inference")
parser.add_argument("--repo_id", type=str, required=True, help="HuggingFace repo ID")
parser.add_argument("--audio_path", type=str, required=True, help="Path to audio file")
parser.add_argument("--prompt", type=str, default="", help="Text prompt")
parser.add_argument("--max_new_tokens", type=int, default=256, help="Max tokens to generate")
parser.add_argument("--temperature", type=float, default=0.7, help="Generation temperature")
parser.add_argument("--llama_path", type=str, default=None, help="Optional: path to LLaMA model")
parser.add_argument("--whisper_path", type=str, default=None, help="Optional: path to Whisper model")
parser.add_argument("--device", type=str, default="cuda", help="Device (cuda or cpu)")
args = parser.parse_args()
# Load model
model = load_audio_llm(
repo_id=args.repo_id,
llama_path=args.llama_path,
whisper_path=args.whisper_path,
device=args.device
)
# Generate response
response = transcribe_and_generate(
model=model,
audio_path=args.audio_path,
prompt=args.prompt,
max_new_tokens=args.max_new_tokens,
temperature=args.temperature
)
print(f"Prompt: {args.prompt}")
print(f"Response: {response}")
|