chancharikm commited on
Commit
b37e7f9
·
verified ·
1 Parent(s): 88ce792

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -5
README.md CHANGED
@@ -37,7 +37,7 @@ We have two ways of using our model for this application. The first is the recom
37
  import t2v_metrics
38
 
39
  ### For a single (video, text) pair:
40
- qwen_score = t2v_metrics.VQAScore(model='qwen2.5-vl-7b', checkpoint='chancharikm/qwen2.5-vl-7b-cam-motion-preview')
41
  video = "videos/baby.mp4" # a video path in string format
42
  text = "a baby crying"
43
  # Calculate probability of "Yes" response
@@ -55,7 +55,7 @@ import torch
55
 
56
  # Load the model
57
  model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
58
- "chancharikm/qwen2.5-vl-7b-cam-motion-preview", torch_dtype="auto", device_map="auto"
59
  )
60
  processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
61
 
@@ -128,7 +128,7 @@ We have two ways of using our model for this application. The first is the recom
128
  import t2v_metrics
129
 
130
  ### For a single (video, text) pair:
131
- qwen_score = t2v_metrics.VQAScore(model='qwen2.5-vl-7b', checkpoint='chancharikm/qwen2.5-vl-7b-cam-motion-preview')
132
  video = "videos/baby.mp4" # a video path in string format
133
  text = "Please describe this image: "
134
  # Calculate probability of "Yes" response
@@ -146,12 +146,12 @@ from qwen_vl_utils import process_vision_info
146
 
147
  # default: Load the model on the available device(s)
148
  model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
149
- "chancharikm/qwen2.5-vl-7b-cam-motion-preview", torch_dtype="auto", device_map="auto"
150
  )
151
 
152
  # We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
153
  # model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
154
- # "chancharikm/qwen2.5-vl-7b-cam-motion-preview",
155
  # torch_dtype=torch.bfloat16,
156
  # attn_implementation="flash_attention_2",
157
  # device_map="auto",
 
37
  import t2v_metrics
38
 
39
  ### For a single (video, text) pair:
40
+ qwen_score = t2v_metrics.VQAScore(model='qwen2.5-vl-7b', checkpoint='chancharikm/qwen2.5-vl-7b-cam-motion')
41
  video = "videos/baby.mp4" # a video path in string format
42
  text = "a baby crying"
43
  # Calculate probability of "Yes" response
 
55
 
56
  # Load the model
57
  model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
58
+ "chancharikm/qwen2.5-vl-7b-cam-motion", torch_dtype="auto", device_map="auto"
59
  )
60
  processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
61
 
 
128
  import t2v_metrics
129
 
130
  ### For a single (video, text) pair:
131
+ qwen_score = t2v_metrics.VQAScore(model='qwen2.5-vl-7b', checkpoint='chancharikm/qwen2.5-vl-7b-cam-motion')
132
  video = "videos/baby.mp4" # a video path in string format
133
  text = "Please describe this image: "
134
  # Calculate probability of "Yes" response
 
146
 
147
  # default: Load the model on the available device(s)
148
  model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
149
+ "chancharikm/qwen2.5-vl-7b-cam-motion", torch_dtype="auto", device_map="auto"
150
  )
151
 
152
  # We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
153
  # model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
154
+ # "chancharikm/qwen2.5-vl-7b-cam-motion",
155
  # torch_dtype=torch.bfloat16,
156
  # attn_implementation="flash_attention_2",
157
  # device_map="auto",