File size: 5,936 Bytes
4b36abb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
---
base_model:
- google/gemma-2-2b-it
tags:
- merge
- mergekit
- lazymergekit
- google/gemma-2-2b-it
---

# gemma-instruct-merge-test_

gemma-instruct-merge-test_ is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [google/gemma-2-2b-it](https://huggingface.co/google/gemma-2-2b-it)

## 🧩 Configuration

```yamlmodels:
- model: google/gemma-2-2b
- model: google/gemma-2-2b-it
  parameters:
    density:
    - filter: model.layers.1.self_attn.q_proj
      value: 0.00539
    - filter: model.layers.2.self_attn.q_proj
      value: 0.03843
    - filter: model.layers.6.self_attn.q_proj
      value: 0.03716
    - filter: model.layers.24.self_attn.q_proj
      value: 0.04552
    - filter: model.layers.25.self_attn.q_proj
      value: 0.03919
    - filter: model.layers.0.self_attn.k_proj
      value: 0.00592
    - filter: model.layers.2.self_attn.k_proj
      value: 0.02603
    - filter: model.layers.3.self_attn.k_proj
      value: 0.07283
    - filter: model.layers.8.self_attn.k_proj
      value: 0.08753
    - filter: model.layers.10.self_attn.k_proj
      value: 0.07783
    - filter: model.layers.23.self_attn.k_proj
      value: 0.05987
    - filter: model.layers.24.self_attn.k_proj
      value: 0.02903
    - filter: model.layers.25.self_attn.k_proj
      value: 0.08715
    - filter: model.layers.0.self_attn.v_proj
      value: 0.03025
    - filter: model.layers.2.self_attn.v_proj
      value: 0.00286
    - filter: model.layers.3.self_attn.v_proj
      value: 0.09155
    - filter: model.layers.6.self_attn.v_proj
      value: 0.06811
    - filter: model.layers.7.self_attn.v_proj
      value: 0.01334
    - filter: model.layers.10.self_attn.v_proj
      value: 0.04
    - filter: model.layers.13.self_attn.v_proj
      value: 0.09347
    - filter: model.layers.24.self_attn.v_proj
      value: 0.07956
    - filter: model.layers.0.self_attn.o_proj
      value: 0.03265
    - filter: model.layers.2.self_attn.o_proj
      value: 0.06134
    - filter: model.layers.4.self_attn.o_proj
      value: 0.07924
    - filter: model.layers.6.self_attn.o_proj
      value: 0.09982
    - filter: model.layers.7.self_attn.o_proj
      value: 0.02826
    - filter: model.layers.8.self_attn.o_proj
      value: 0.03906
    - filter: model.layers.19.self_attn.o_proj
      value: 0.09507
    - filter: model.layers.23.self_attn.o_proj
      value: 0.00282
    - filter: model.layers.24.self_attn.o_proj
      value: 0.09864
    - filter: model.layers.25.self_attn.o_proj
      value: 0.00961
    - filter: model.layers.1.mlp.gate_proj
      value: 0.08775
    - filter: model.layers.2.mlp.gate_proj
      value: 0.0001
    - filter: model.layers.6.mlp.gate_proj
      value: 0.06577
    - filter: model.layers.12.mlp.gate_proj
      value: 0.02651
    - filter: model.layers.13.mlp.gate_proj
      value: 0.04687
    - filter: model.layers.15.mlp.gate_proj
      value: 0.03147
    - filter: model.layers.16.mlp.gate_proj
      value: 0.05726
    - filter: model.layers.17.mlp.gate_proj
      value: 0.04511
    - filter: model.layers.23.mlp.gate_proj
      value: 0.08641
    - filter: model.layers.1.mlp.up_proj
      value: 0.06887
    - filter: model.layers.6.mlp.up_proj
      value: 0.07411
    - filter: model.layers.7.mlp.up_proj
      value: 0.05424
    - filter: model.layers.12.mlp.up_proj
      value: 0.08044
    - filter: model.layers.13.mlp.up_proj
      value: 0.0021
    - filter: model.layers.14.mlp.up_proj
      value: 0.26389
    - filter: model.layers.15.mlp.up_proj
      value: 0.06886
    - filter: model.layers.23.mlp.up_proj
      value: 0.02931
    - filter: model.layers.0.mlp.down_proj
      value: 0.06756
    - filter: model.layers.1.mlp.down_proj
      value: 0.03746
    - filter: model.layers.2.mlp.down_proj
      value: 0.09104
    - filter: model.layers.3.mlp.down_proj
      value: 0.06643
    - filter: model.layers.4.mlp.down_proj
      value: 0.05003
    - filter: model.layers.5.mlp.down_proj
      value: 0.0406
    - filter: model.layers.6.mlp.down_proj
      value: 0.01609
    - filter: model.layers.7.mlp.down_proj
      value: 0.09629
    - filter: model.layers.8.mlp.down_proj
      value: 0.08912
    - filter: model.layers.10.mlp.down_proj
      value: 0.04635
    - filter: model.layers.11.mlp.down_proj
      value: 0.0099
    - filter: model.layers.12.mlp.down_proj
      value: 0.03487
    - filter: model.layers.13.mlp.down_proj
      value: 0.04977
    - filter: model.layers.14.mlp.down_proj
      value: 0.00393
    - filter: model.layers.15.mlp.down_proj
      value: 0.00748
    - filter: model.layers.16.mlp.down_proj
      value: 0.06696
    - filter: model.layers.17.mlp.down_proj
      value: 0.02067
    - filter: model.layers.19.mlp.down_proj
      value: 0.009
    - filter: model.layers.20.mlp.down_proj
      value: 0.0215
    - filter: model.layers.21.mlp.down_proj
      value: 0.04196
    - filter: model.layers.22.mlp.down_proj
      value: 0.06326
    - filter: model.layers.25.mlp.down_proj
      value: 0.04905
    weight:
    - value: 1
merge_method: ties
base_model: google/gemma-2-2b
parameters:
  normalize: true
  int8_mask: true
dtype: bfloat16
tokenizer_source: union
```

## 💻 Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "choprahetarth/gemma-instruct-merge-test_"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```