File size: 4,400 Bytes
707cacf
7a5980d
1a0631e
 
 
 
 
 
 
 
707cacf
 
1a0631e
 
7a5980d
bc6710d
94abbdc
bc6710d
1a0631e
034877d
7a5980d
1a0631e
94abbdc
1a0631e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94abbdc
 
1a0631e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94abbdc
1a0631e
94abbdc
1a0631e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94abbdc
1a0631e
 
 
 
 
 
 
84ca6e4
1a0631e
 
 
94abbdc
bd1f758
1a0631e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a5980d
bd1f758
 
 
 
7a5980d
707cacf
 
1a0631e
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
---
library_name: peft
license: mit
base_model: microsoft/Phi-3.5-mini-instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: sn_math_curator_on_ensemble_8
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->


This is an open-source fine-tuned reasoning adapter of [microsoft/Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct), transformed into a math reasoning model using data curated from [collinear-ai/R1-Distill-SFT-Curated](https://huggingface.co/datasets/collinear-ai/R1-Distill-SFT-Curated).

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl version</summary>

axolotl version: `0.5.0`
<!-- ```yaml
strict: false
base_model: microsoft/Phi-3.5-mini-instruct
tokenizer_config: microsoft/Phi-3.5-mini-instruct
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

# Output configuration
hub_model_id: collinear-ai/sn_math_curator_on_ensemble_8
dataset_prepared_path: data/sn_math_curator_on_ensemble_8
output_dir: model/sn_math_curator_on_ensemble_8

# Format the dataset into the right instruction format.
chat_template: phi_3
datasets:
  - path: collinear-ai/R1-Distill-SFT-numina-math-ensemble_8_train
    split: train
    type: chat_template
    chat_template: phi_3
    field_messages: train_conv
    message_field_role: role
    message_field_content: content
train_on_inputs: false #FALSE

val_set_size: 0.05
# Data packing
sequence_len: 4096
eval_sample_packing: false
sample_packing: false
pad_to_sequence_len: true
group_by_length: false

# Lora config
adapter: qlora
lora_model_dir:
load_in_8bit: false
load_in_4bit: true -->
<!-- lora_r: 128
lora_alpha: 64
lora_dropout: 0.2
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
  - gate_proj
  - down_proj
  - up_proj
  - q_proj
  - v_proj
  - k_proj
  - o_proj
lora_modules_to_save: 
  - embed_tokens
  - lm_head


# Logging config
wandb_project: sn-curators-downstream
wandb_entity: nazneen
wandb_name: curator_math_sn_ensemble_8_phi

# Trainer config
gradient_accumulation_steps: 2
micro_batch_size: 10
num_epochs: 1
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.000005


bfloat16: true
bf16: true
fp16:
tf32: false -->

<!-- gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 10
xformers_attention:
flash_attention: true
save_safetensors: true



warmup_steps: 50
evals_per_epoch: 3
eval_table_size: 3
eval_max_new_tokens: 2048
saves_per_epoch: 40
debug:
deepspeed:
weight_decay: 0.02
fsdp_config:
special_tokens:
  bos_token: "<s>"
  eos_token: "<|endoftext|>"
  unk_token: "<unk>"
  pad_token: "<|endoftext|>"

``` -->

</details><br>



## Intended uses & limitations

Math-Reasoning

## Training and evaluation data

Training data curated from [collinear-ai/R1-Distill-SFT-Curated](https://huggingface.co/datasets/collinear-ai/R1-Distill-SFT-Curated)
Evaluation data: [HuggingFaceH4/MATH-500](https://huggingface.co/datasets/HuggingFaceH4/MATH-500)

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 160
- total_eval_batch_size: 80
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log        | 0.0003 | 1    | 0.6646          |
| 0.3174        | 0.3335 | 1247 | 0.3329          |
| 0.307         | 0.6670 | 2494 | 0.3169          |

### Evaluation on Math500

![Math Reasoning Evaluation](https://huggingface.co/collinear-ai/math_reasoning_phi_c2/raw/main/math500_eval_c1_c2.png)


### Framework versions

- PEFT 0.13.2
- Transformers 4.46.1
- Pytorch 2.3.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.3