File size: 6,156 Bytes
ac4f0d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
{
  "cells": [
    {
      "cell_type": "code",
      "execution_count": 1,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "4mDGz9V6JC0a",
        "outputId": "c5353c98-f1b4-4840-ea3e-0abd1aaefc6b"
      },
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "  Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n",
            "  Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n",
            "  Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
            "  Building wheel for diffusers (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n"
          ]
        }
      ],
      "source": [
        "!pip install git+https://github.com/cosmo3769/diffusers@standardize-model-card-t2i-lora -q"
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "import os\n",
        "from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card"
      ],
      "metadata": {
        "id": "r0rK5JfUrAfc"
      },
      "execution_count": 2,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "def save_model_card(repo_id: str, images=None, base_model=str, dataset_name=str, repo_folder=None):\n",
        "    img_str = \"\"\n",
        "    for i, image in enumerate(images):\n",
        "        image.save(os.path.join(repo_folder, f\"image_{i}.png\"))\n",
        "        img_str += f\"![img_{i}](./image_{i}.png)\\n\"\n",
        "\n",
        "    model_description = f\"\"\"\n",
        "# LoRA text2image fine-tuning - {repo_id}\n",
        "These are LoRA adaption weights for {base_model}. The weights were fine-tuned on the {dataset_name} dataset. You can find some example images in the following. \\n\n",
        "{img_str}\n",
        "\"\"\"\n",
        "\n",
        "    model_card = load_or_create_model_card(\n",
        "        repo_id_or_path=repo_id,\n",
        "        from_training=True,\n",
        "        license=\"creativeml-openrail-m\",\n",
        "        base_model=base_model,\n",
        "        model_description=model_description,\n",
        "        inference=True,\n",
        "    )\n",
        "\n",
        "    tags = [\n",
        "        \"stable-diffusion\",\n",
        "        \"stable-diffusion-diffusers\",\n",
        "        \"text-to-image\",\n",
        "        \"diffusers\",\n",
        "        \"lora\",\n",
        "    ]\n",
        "    model_card = populate_model_card(model_card, tags=tags)\n",
        "\n",
        "    model_card.save(os.path.join(repo_folder, \"README.md\"))"
      ],
      "metadata": {
        "id": "6mgnDhfzrTp4"
      },
      "execution_count": 3,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "from diffusers.utils import load_image\n",
        "\n",
        "images = [\n",
        "    load_image(\"https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/A%20mushroom%20in%20%5BV%5D%20style.png\")\n",
        "    for _ in range(3)\n",
        "]\n",
        "\n",
        "save_model_card(\n",
        "    repo_id=\"cosmo3769/test\",\n",
        "    images=images,\n",
        "    base_model=\"runwayml/stable-diffusion-v1-5\",\n",
        "    dataset_name=\"text-to-image\",\n",
        "    repo_folder=\".\",\n",
        ")"
      ],
      "metadata": {
        "id": "JTEDsOd_rm7-"
      },
      "execution_count": 9,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "!cat README.md"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "NwCOmASdsUCT",
        "outputId": "119e5ee4-e737-4c58-c7f1-6e1ccbe274a9"
      },
      "execution_count": 10,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "---\n",
            "license: creativeml-openrail-m\n",
            "library_name: diffusers\n",
            "tags:\n",
            "- stable-diffusion\n",
            "- stable-diffusion-diffusers\n",
            "- text-to-image\n",
            "- diffusers\n",
            "- lora\n",
            "inference: true\n",
            "base_model: runwayml/stable-diffusion-v1-5\n",
            "---\n",
            "\n",
            "<!-- This model card has been generated automatically according to the information the training script had access to. You\n",
            "should probably proofread and complete it, then remove this comment. -->\n",
            "\n",
            "\n",
            "# LoRA text2image fine-tuning - cosmo3769/test\n",
            "These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the text-to-image dataset. You can find some example images in the following. \n",
            "\n",
            "![img_0](./image_0.png)\n",
            "![img_1](./image_1.png)\n",
            "![img_2](./image_2.png)\n",
            "\n",
            "\n",
            "\n",
            "## Intended uses & limitations\n",
            "\n",
            "#### How to use\n",
            "\n",
            "```python\n",
            "# TODO: add an example code snippet for running this diffusion pipeline\n",
            "```\n",
            "\n",
            "#### Limitations and bias\n",
            "\n",
            "[TODO: provide examples of latent issues and potential remediations]\n",
            "\n",
            "## Training details\n",
            "\n",
            "[TODO: describe the data used to train the model]"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [],
      "metadata": {
        "id": "w7IqDNR72RGf"
      },
      "execution_count": null,
      "outputs": []
    }
  ],
  "metadata": {
    "colab": {
      "provenance": []
    },
    "kernelspec": {
      "display_name": "Python 3",
      "name": "python3"
    },
    "language_info": {
      "name": "python"
    }
  },
  "nbformat": 4,
  "nbformat_minor": 0
}