File size: 36,337 Bytes
09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 f9489e0 09126c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 |
---
language:
- es
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:14907
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: jinaai/jina-embeddings-v3
widget:
- source_sentence: Describe la tradición del 'rosario de candiles' en el contexto
de la minería.
sentences:
- Un mechazo es la combustión de la mecha sin que se llegue a inflamar el barreno.
- La siega tradicional en Escucha comenzaba antes de San Juan con las cebadas.
- El 'rosario de candiles' es una tradición religiosa celebrada en la festividad
de San Juan, en la que los mineros escuchan y acompañan con sus candiles de carburo,
rezando a dos coros y cantando en parte.
- source_sentence: ¿Qué significa la expresión 'pillar una mojadina'?
sentences:
- En el campeonato provincial de atletismo en Alcorisa en mayo, Pilar Brumos de
Escucha logró la 3ª posición en 600 metros y el subcampeonato en peso.
- Los empresarios de Escucha se habían unido para poder participar en las elecciones
a CC.PP. ya que era necesario que la plantilla de la empresa superase el número
de 50 trabajadores..
- '''Pillar una mojadina'' significa empaparse, quedar empapado.'
- source_sentence: ¿En qué año Carbones de Teruel registra la mina 'pablo' en Escucha?
sentences:
- Puede referirse a un calcetín para bebés o a un calcetín gordo.
- Carbones de Teruel registra la mina 'pablo' en Escucha en 1900.
- 'Jesús Conesa explicó a la Junta de Espectáculos que el anterior propietario,
Sr. Latorre Galindo, tenía otro cine en Utrillas, lo que causaba continuos equívocos
en envíos de material y pagos, al creerse que ambos cines le pertenecían o eran
la misma empresa. '
- source_sentence: ¿Quién regentaba el Cine Avenida de Escucha en el momento de su
cierre?
sentences:
- Se usa con el significado de 'cuando'.
- El CD Escucha alineó a Castillo, Romero, Bobadilla, Moraleda, Luis, González,
Higinio, Torres, Calomarde I, Calomarde II y Navarro en el partido de Copa contra
el Alcorisa.
- Antonio Malpica regentaba el Cine Avenida de Escucha en el momento de su cierre.
- source_sentence: ¿Qué porcentaje de aumento salarial reclamaba el Sindicato Minero
en el conflicto de Utrillas que llevó a plantear la huelga del 12 de octubre de
1930?
sentences:
- Antonio Gargallo.
- Una publicación con una fotografía para el recuerdo de la locomotora llamada 'Escucha'.
- El Sindicato Minero reclamaba un aumento del 20% los sueldos en el conflicto de
Utrillas.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: Lampistero
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 1024
type: dim_1024
metrics:
- type: cosine_accuracy@1
value: 0.7803258901629451
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8883524441762221
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.904043452021726
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9233554616777309
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7803258901629451
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.29611748139207406
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.18080869040434522
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09233554616777308
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7803258901629451
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8883524441762221
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.904043452021726
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9233554616777309
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8576141434466037
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8359425142014155
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8374344979701236
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.7827398913699457
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8877489438744719
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9034399517199758
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9245624622812312
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7827398913699457
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.295916314624824
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.18068799034399516
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09245624622812311
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7827398913699457
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8877489438744719
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9034399517199758
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9245624622812312
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.858770916125463
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8371705894186279
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8385437636605255
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.7797223898611949
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8859384429692215
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9010259505129753
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9227519613759807
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7797223898611949
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2953128143230738
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.18020519010259503
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09227519613759806
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7797223898611949
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8859384429692215
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9010259505129753
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9227519613759807
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8564496755344808
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8346785163471941
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8361853082918266
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.7706698853349426
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8823174411587206
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9016294508147255
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9191309595654797
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7706698853349426
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2941058137195735
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.18032589016294506
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09191309595654798
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7706698853349426
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8823174411587206
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9016294508147255
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9191309595654797
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.851155539622205
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8286940445057519
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8302805177061129
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.7604103802051901
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8690404345202173
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8901629450814725
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9130959565479783
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7604103802051901
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.28968014484007243
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1780325890162945
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09130959565479783
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7604103802051901
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8690404345202173
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8901629450814725
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9130959565479783
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8415141158022221
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8181217729497756
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8199539602494803
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.7248038624019312
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.852142426071213
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8750754375377188
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8974049487024743
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7248038624019312
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.28404747535707103
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17501508750754374
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08974049487024743
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7248038624019312
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.852142426071213
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8750754375377188
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8974049487024743
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8181789750224895
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7920167926353802
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.793825252598125
name: Cosine Map@100
---
# Lampistero
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [jinaai/jina-embeddings-v3](https://huggingface.co/jinaai/jina-embeddings-v3) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [jinaai/jina-embeddings-v3](https://huggingface.co/jinaai/jina-embeddings-v3) <!-- at revision f1944de8402dcd5f2b03f822a4bc22a7f2de2eb9 -->
- **Maximum Sequence Length:** 8194 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- json
- **Language:** es
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(transformer): Transformer(
(auto_model): XLMRobertaLoRA(
(roberta): XLMRobertaModel(
(embeddings): XLMRobertaEmbeddings(
(word_embeddings): ParametrizedEmbedding(
250002, 1024, padding_idx=1
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
(token_type_embeddings): ParametrizedEmbedding(
1, 1024
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
)
(emb_drop): Dropout(p=0.1, inplace=False)
(emb_ln): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(encoder): XLMRobertaEncoder(
(layers): ModuleList(
(0-23): 24 x Block(
(mixer): MHA(
(rotary_emb): RotaryEmbedding()
(Wqkv): ParametrizedLinearResidual(
in_features=1024, out_features=3072, bias=True
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
(inner_attn): FlashSelfAttention(
(drop): Dropout(p=0.1, inplace=False)
)
(inner_cross_attn): FlashCrossAttention(
(drop): Dropout(p=0.1, inplace=False)
)
(out_proj): ParametrizedLinear(
in_features=1024, out_features=1024, bias=True
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
)
(dropout1): Dropout(p=0.1, inplace=False)
(drop_path1): StochasticDepth(p=0.0, mode=row)
(norm1): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(mlp): Mlp(
(fc1): ParametrizedLinear(
in_features=1024, out_features=4096, bias=True
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
(fc2): ParametrizedLinear(
in_features=4096, out_features=1024, bias=True
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
)
(dropout2): Dropout(p=0.1, inplace=False)
(drop_path2): StochasticDepth(p=0.0, mode=row)
(norm2): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
)
)
)
(pooler): XLMRobertaPooler(
(dense): ParametrizedLinear(
in_features=1024, out_features=1024, bias=True
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
(activation): Tanh()
)
)
)
)
(pooler): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(normalizer): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("csanz91/lampistero_rag_embeddings")
# Run inference
sentences = [
'¿Qué porcentaje de aumento salarial reclamaba el Sindicato Minero en el conflicto de Utrillas que llevó a plantear la huelga del 12 de octubre de 1930?',
'El Sindicato Minero reclamaba un aumento del 20% los sueldos en el conflicto de Utrillas.',
'Antonio Gargallo.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_1024`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
```json
{
"truncate_dim": 1024
}
```
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.7803 |
| cosine_accuracy@3 | 0.8884 |
| cosine_accuracy@5 | 0.904 |
| cosine_accuracy@10 | 0.9234 |
| cosine_precision@1 | 0.7803 |
| cosine_precision@3 | 0.2961 |
| cosine_precision@5 | 0.1808 |
| cosine_precision@10 | 0.0923 |
| cosine_recall@1 | 0.7803 |
| cosine_recall@3 | 0.8884 |
| cosine_recall@5 | 0.904 |
| cosine_recall@10 | 0.9234 |
| **cosine_ndcg@10** | **0.8576** |
| cosine_mrr@10 | 0.8359 |
| cosine_map@100 | 0.8374 |
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
```json
{
"truncate_dim": 768
}
```
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.7827 |
| cosine_accuracy@3 | 0.8877 |
| cosine_accuracy@5 | 0.9034 |
| cosine_accuracy@10 | 0.9246 |
| cosine_precision@1 | 0.7827 |
| cosine_precision@3 | 0.2959 |
| cosine_precision@5 | 0.1807 |
| cosine_precision@10 | 0.0925 |
| cosine_recall@1 | 0.7827 |
| cosine_recall@3 | 0.8877 |
| cosine_recall@5 | 0.9034 |
| cosine_recall@10 | 0.9246 |
| **cosine_ndcg@10** | **0.8588** |
| cosine_mrr@10 | 0.8372 |
| cosine_map@100 | 0.8385 |
#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
```json
{
"truncate_dim": 512
}
```
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.7797 |
| cosine_accuracy@3 | 0.8859 |
| cosine_accuracy@5 | 0.901 |
| cosine_accuracy@10 | 0.9228 |
| cosine_precision@1 | 0.7797 |
| cosine_precision@3 | 0.2953 |
| cosine_precision@5 | 0.1802 |
| cosine_precision@10 | 0.0923 |
| cosine_recall@1 | 0.7797 |
| cosine_recall@3 | 0.8859 |
| cosine_recall@5 | 0.901 |
| cosine_recall@10 | 0.9228 |
| **cosine_ndcg@10** | **0.8564** |
| cosine_mrr@10 | 0.8347 |
| cosine_map@100 | 0.8362 |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
```json
{
"truncate_dim": 256
}
```
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.7707 |
| cosine_accuracy@3 | 0.8823 |
| cosine_accuracy@5 | 0.9016 |
| cosine_accuracy@10 | 0.9191 |
| cosine_precision@1 | 0.7707 |
| cosine_precision@3 | 0.2941 |
| cosine_precision@5 | 0.1803 |
| cosine_precision@10 | 0.0919 |
| cosine_recall@1 | 0.7707 |
| cosine_recall@3 | 0.8823 |
| cosine_recall@5 | 0.9016 |
| cosine_recall@10 | 0.9191 |
| **cosine_ndcg@10** | **0.8512** |
| cosine_mrr@10 | 0.8287 |
| cosine_map@100 | 0.8303 |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
```json
{
"truncate_dim": 128
}
```
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.7604 |
| cosine_accuracy@3 | 0.869 |
| cosine_accuracy@5 | 0.8902 |
| cosine_accuracy@10 | 0.9131 |
| cosine_precision@1 | 0.7604 |
| cosine_precision@3 | 0.2897 |
| cosine_precision@5 | 0.178 |
| cosine_precision@10 | 0.0913 |
| cosine_recall@1 | 0.7604 |
| cosine_recall@3 | 0.869 |
| cosine_recall@5 | 0.8902 |
| cosine_recall@10 | 0.9131 |
| **cosine_ndcg@10** | **0.8415** |
| cosine_mrr@10 | 0.8181 |
| cosine_map@100 | 0.82 |
#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
```json
{
"truncate_dim": 64
}
```
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.7248 |
| cosine_accuracy@3 | 0.8521 |
| cosine_accuracy@5 | 0.8751 |
| cosine_accuracy@10 | 0.8974 |
| cosine_precision@1 | 0.7248 |
| cosine_precision@3 | 0.284 |
| cosine_precision@5 | 0.175 |
| cosine_precision@10 | 0.0897 |
| cosine_recall@1 | 0.7248 |
| cosine_recall@3 | 0.8521 |
| cosine_recall@5 | 0.8751 |
| cosine_recall@10 | 0.8974 |
| **cosine_ndcg@10** | **0.8182** |
| cosine_mrr@10 | 0.792 |
| cosine_map@100 | 0.7938 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### json
* Dataset: json
* Size: 14,907 training samples
* Columns: <code>query</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
| | query | answer |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 9 tokens</li><li>mean: 25.88 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 34.09 tokens</li><li>max: 340 tokens</li></ul> |
* Samples:
| query | answer |
|:--------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------|
| <code>En Valdeconejos, ¿cuál era la sociedad de agricultores en 1952?</code> | <code>En Valdeconejos, la sociedad de agricultores en 1952 era el Pósito de Agricultores.</code> |
| <code>¿Qué nombres de capataces se registran en el pueblo de Escucha en el año 1952?</code> | <code>En Escucha, en 1952, los capataces registrados son Peralta (Manuel) y Rodriguez (Gonzalo).</code> |
| <code>En el contexto de la minería, ¿qué implica 'despajar'?</code> | <code>'Despajar' se refiere a cribar a mano material y desechos para obtener las partes de carbón que hay en ellos.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 32
- `learning_rate`: 2e-05
- `num_train_epochs`: 12
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 32
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 12
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `tp_size`: 0
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | dim_1024_cosine_ndcg@10 | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|:-------:|:----:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
| 1.0 | 8 | - | 0.7663 | 0.7676 | 0.7656 | 0.7626 | 0.7393 | 0.6969 |
| 1.2747 | 10 | 127.0406 | - | - | - | - | - | - |
| 2.0 | 16 | - | 0.8244 | 0.8240 | 0.8226 | 0.8172 | 0.8060 | 0.7775 |
| 2.5494 | 20 | 38.8995 | - | - | - | - | - | - |
| 3.0 | 24 | - | 0.8425 | 0.8426 | 0.8444 | 0.8373 | 0.8252 | 0.7996 |
| 3.8240 | 30 | 20.1528 | - | - | - | - | - | - |
| 4.0 | 32 | - | 0.8526 | 0.8520 | 0.8498 | 0.8456 | 0.8289 | 0.8037 |
| 5.0 | 40 | 14.0513 | 0.8550 | 0.8543 | 0.8517 | 0.8490 | 0.8368 | 0.8139 |
| 6.0 | 48 | - | 0.8572 | 0.8565 | 0.8557 | 0.8520 | 0.8404 | 0.8170 |
| 6.2747 | 50 | 13.364 | - | - | - | - | - | - |
| 7.0 | 56 | - | 0.8579 | 0.8576 | 0.8553 | 0.8514 | 0.8422 | 0.8180 |
| 7.5494 | 60 | 12.7986 | - | - | - | - | - | - |
| 8.0 | 64 | - | 0.8573 | 0.8580 | 0.8560 | 0.8523 | 0.8414 | 0.8178 |
| 8.8240 | 70 | 12.0091 | - | - | - | - | - | - |
| 9.0 | 72 | - | 0.8578 | 0.8586 | 0.8562 | 0.8519 | 0.8423 | 0.8184 |
| 10.0 | 80 | 10.9468 | 0.8583 | 0.8589 | 0.8565 | 0.8530 | 0.8413 | 0.8191 |
| 10.5494 | 84 | - | 0.8576 | 0.8588 | 0.8564 | 0.8512 | 0.8415 | 0.8182 |
### Framework Versions
- Python: 3.12.10
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.7.0+cu126
- Accelerate: 1.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |