File size: 36,337 Bytes
09126c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
 
 
 
 
 
 
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
 
 
 
 
 
 
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
 
 
 
 
 
 
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
 
 
 
 
 
 
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
 
 
 
 
 
 
 
f9489e0
09126c7
 
f9489e0
09126c7
 
 
 
 
 
 
 
f9489e0
09126c7
 
f9489e0
09126c7
 
 
 
 
 
 
 
f9489e0
09126c7
 
f9489e0
09126c7
 
 
 
 
 
 
 
f9489e0
09126c7
 
f9489e0
09126c7
 
f9489e0
09126c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9489e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09126c7
 
 
 
 
 
 
 
 
 
 
 
 
f9489e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09126c7
 
 
 
 
 
 
 
 
 
 
 
 
f9489e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09126c7
 
 
 
 
 
 
 
 
 
 
 
 
f9489e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09126c7
 
 
 
 
 
 
 
 
 
 
 
 
f9489e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09126c7
 
 
 
 
 
 
 
 
 
 
 
 
f9489e0
 
09126c7
 
f9489e0
 
09126c7
 
f9489e0
 
09126c7
 
f9489e0
 
 
09126c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9489e0
09126c7
f9489e0
09126c7
f9489e0
09126c7
 
 
 
 
 
 
 
 
 
 
 
 
 
f9489e0
09126c7
 
 
f9489e0
09126c7
 
 
 
 
 
 
 
f9489e0
09126c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9489e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09126c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
---
language:
- es
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:14907
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: jinaai/jina-embeddings-v3
widget:
- source_sentence: Describe la tradición del 'rosario de candiles' en el contexto
    de la minería.
  sentences:
  - Un mechazo es la combustión de la mecha sin que se llegue a inflamar el barreno.
  - La siega tradicional en Escucha comenzaba antes de San Juan con las cebadas.
  - El 'rosario de candiles' es una tradición religiosa celebrada en la festividad
    de San Juan, en la que los mineros escuchan y acompañan con sus candiles de carburo,
    rezando a dos coros y cantando en parte.
- source_sentence: ¿Qué significa la expresión 'pillar una mojadina'?
  sentences:
  - En el campeonato provincial de atletismo en Alcorisa en mayo, Pilar Brumos de
    Escucha logró la 3ª posición en 600 metros y el subcampeonato en peso.
  - Los empresarios de Escucha se habían unido para poder participar en las elecciones
    a CC.PP. ya que era necesario que la plantilla de la empresa superase el número
    de 50 trabajadores..
  - '''Pillar una mojadina'' significa empaparse, quedar empapado.'
- source_sentence: ¿En qué año Carbones de Teruel registra la mina 'pablo' en Escucha?
  sentences:
  - Puede referirse a un calcetín para bebés o a un calcetín gordo.
  - Carbones de Teruel registra la mina 'pablo' en Escucha en 1900.
  - 'Jesús Conesa explicó a la Junta de Espectáculos que el anterior propietario,
    Sr. Latorre Galindo, tenía otro cine en Utrillas, lo que causaba continuos equívocos
    en envíos de material y pagos, al creerse que ambos cines le pertenecían o eran
    la misma empresa. '
- source_sentence: ¿Quién regentaba el Cine Avenida de Escucha en el momento de su
    cierre?
  sentences:
  - Se usa con el significado de 'cuando'.
  - El CD Escucha alineó a Castillo, Romero, Bobadilla, Moraleda, Luis, González,
    Higinio, Torres, Calomarde I, Calomarde II y Navarro en el partido de Copa contra
    el Alcorisa.
  - Antonio Malpica regentaba el Cine Avenida de Escucha en el momento de su cierre.
- source_sentence: ¿Qué porcentaje de aumento salarial reclamaba el Sindicato Minero
    en el conflicto de Utrillas que llevó a plantear la huelga del 12 de octubre de
    1930?
  sentences:
  - Antonio Gargallo.
  - Una publicación con una fotografía para el recuerdo de la locomotora llamada 'Escucha'.
  - El Sindicato Minero reclamaba un aumento del 20% los sueldos en el conflicto de
    Utrillas.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: Lampistero
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 1024
      type: dim_1024
    metrics:
    - type: cosine_accuracy@1
      value: 0.7803258901629451
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8883524441762221
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.904043452021726
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9233554616777309
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7803258901629451
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.29611748139207406
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.18080869040434522
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09233554616777308
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7803258901629451
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8883524441762221
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.904043452021726
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9233554616777309
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8576141434466037
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8359425142014155
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8374344979701236
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.7827398913699457
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8877489438744719
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9034399517199758
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9245624622812312
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7827398913699457
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.295916314624824
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.18068799034399516
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09245624622812311
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7827398913699457
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8877489438744719
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9034399517199758
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9245624622812312
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.858770916125463
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8371705894186279
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8385437636605255
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.7797223898611949
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8859384429692215
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9010259505129753
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9227519613759807
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7797223898611949
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2953128143230738
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.18020519010259503
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09227519613759806
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7797223898611949
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8859384429692215
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9010259505129753
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9227519613759807
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8564496755344808
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8346785163471941
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8361853082918266
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.7706698853349426
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8823174411587206
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9016294508147255
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9191309595654797
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7706698853349426
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2941058137195735
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.18032589016294506
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09191309595654798
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7706698853349426
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8823174411587206
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9016294508147255
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9191309595654797
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.851155539622205
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8286940445057519
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8302805177061129
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.7604103802051901
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8690404345202173
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8901629450814725
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9130959565479783
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7604103802051901
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.28968014484007243
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1780325890162945
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09130959565479783
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7604103802051901
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8690404345202173
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8901629450814725
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9130959565479783
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8415141158022221
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8181217729497756
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8199539602494803
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.7248038624019312
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.852142426071213
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8750754375377188
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8974049487024743
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7248038624019312
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.28404747535707103
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17501508750754374
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08974049487024743
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7248038624019312
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.852142426071213
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8750754375377188
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8974049487024743
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8181789750224895
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7920167926353802
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.793825252598125
      name: Cosine Map@100
---

# Lampistero

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [jinaai/jina-embeddings-v3](https://huggingface.co/jinaai/jina-embeddings-v3) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [jinaai/jina-embeddings-v3](https://huggingface.co/jinaai/jina-embeddings-v3) <!-- at revision f1944de8402dcd5f2b03f822a4bc22a7f2de2eb9 -->
- **Maximum Sequence Length:** 8194 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - json
- **Language:** es
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (transformer): Transformer(
    (auto_model): XLMRobertaLoRA(
      (roberta): XLMRobertaModel(
        (embeddings): XLMRobertaEmbeddings(
          (word_embeddings): ParametrizedEmbedding(
            250002, 1024, padding_idx=1
            (parametrizations): ModuleDict(
              (weight): ParametrizationList(
                (0): LoRAParametrization()
              )
            )
          )
          (token_type_embeddings): ParametrizedEmbedding(
            1, 1024
            (parametrizations): ModuleDict(
              (weight): ParametrizationList(
                (0): LoRAParametrization()
              )
            )
          )
        )
        (emb_drop): Dropout(p=0.1, inplace=False)
        (emb_ln): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
        (encoder): XLMRobertaEncoder(
          (layers): ModuleList(
            (0-23): 24 x Block(
              (mixer): MHA(
                (rotary_emb): RotaryEmbedding()
                (Wqkv): ParametrizedLinearResidual(
                  in_features=1024, out_features=3072, bias=True
                  (parametrizations): ModuleDict(
                    (weight): ParametrizationList(
                      (0): LoRAParametrization()
                    )
                  )
                )
                (inner_attn): FlashSelfAttention(
                  (drop): Dropout(p=0.1, inplace=False)
                )
                (inner_cross_attn): FlashCrossAttention(
                  (drop): Dropout(p=0.1, inplace=False)
                )
                (out_proj): ParametrizedLinear(
                  in_features=1024, out_features=1024, bias=True
                  (parametrizations): ModuleDict(
                    (weight): ParametrizationList(
                      (0): LoRAParametrization()
                    )
                  )
                )
              )
              (dropout1): Dropout(p=0.1, inplace=False)
              (drop_path1): StochasticDepth(p=0.0, mode=row)
              (norm1): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (mlp): Mlp(
                (fc1): ParametrizedLinear(
                  in_features=1024, out_features=4096, bias=True
                  (parametrizations): ModuleDict(
                    (weight): ParametrizationList(
                      (0): LoRAParametrization()
                    )
                  )
                )
                (fc2): ParametrizedLinear(
                  in_features=4096, out_features=1024, bias=True
                  (parametrizations): ModuleDict(
                    (weight): ParametrizationList(
                      (0): LoRAParametrization()
                    )
                  )
                )
              )
              (dropout2): Dropout(p=0.1, inplace=False)
              (drop_path2): StochasticDepth(p=0.0, mode=row)
              (norm2): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            )
          )
        )
        (pooler): XLMRobertaPooler(
          (dense): ParametrizedLinear(
            in_features=1024, out_features=1024, bias=True
            (parametrizations): ModuleDict(
              (weight): ParametrizationList(
                (0): LoRAParametrization()
              )
            )
          )
          (activation): Tanh()
        )
      )
    )
  )
  (pooler): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (normalizer): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("csanz91/lampistero_rag_embeddings")
# Run inference
sentences = [
    '¿Qué porcentaje de aumento salarial reclamaba el Sindicato Minero en el conflicto de Utrillas que llevó a plantear la huelga del 12 de octubre de 1930?',
    'El Sindicato Minero reclamaba un aumento del 20% los sueldos en el conflicto de Utrillas.',
    'Antonio Gargallo.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Dataset: `dim_1024`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
  ```json
  {
      "truncate_dim": 1024
  }
  ```

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.7803     |
| cosine_accuracy@3   | 0.8884     |
| cosine_accuracy@5   | 0.904      |
| cosine_accuracy@10  | 0.9234     |
| cosine_precision@1  | 0.7803     |
| cosine_precision@3  | 0.2961     |
| cosine_precision@5  | 0.1808     |
| cosine_precision@10 | 0.0923     |
| cosine_recall@1     | 0.7803     |
| cosine_recall@3     | 0.8884     |
| cosine_recall@5     | 0.904      |
| cosine_recall@10    | 0.9234     |
| **cosine_ndcg@10**  | **0.8576** |
| cosine_mrr@10       | 0.8359     |
| cosine_map@100      | 0.8374     |

#### Information Retrieval

* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
  ```json
  {
      "truncate_dim": 768
  }
  ```

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.7827     |
| cosine_accuracy@3   | 0.8877     |
| cosine_accuracy@5   | 0.9034     |
| cosine_accuracy@10  | 0.9246     |
| cosine_precision@1  | 0.7827     |
| cosine_precision@3  | 0.2959     |
| cosine_precision@5  | 0.1807     |
| cosine_precision@10 | 0.0925     |
| cosine_recall@1     | 0.7827     |
| cosine_recall@3     | 0.8877     |
| cosine_recall@5     | 0.9034     |
| cosine_recall@10    | 0.9246     |
| **cosine_ndcg@10**  | **0.8588** |
| cosine_mrr@10       | 0.8372     |
| cosine_map@100      | 0.8385     |

#### Information Retrieval

* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
  ```json
  {
      "truncate_dim": 512
  }
  ```

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.7797     |
| cosine_accuracy@3   | 0.8859     |
| cosine_accuracy@5   | 0.901      |
| cosine_accuracy@10  | 0.9228     |
| cosine_precision@1  | 0.7797     |
| cosine_precision@3  | 0.2953     |
| cosine_precision@5  | 0.1802     |
| cosine_precision@10 | 0.0923     |
| cosine_recall@1     | 0.7797     |
| cosine_recall@3     | 0.8859     |
| cosine_recall@5     | 0.901      |
| cosine_recall@10    | 0.9228     |
| **cosine_ndcg@10**  | **0.8564** |
| cosine_mrr@10       | 0.8347     |
| cosine_map@100      | 0.8362     |

#### Information Retrieval

* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
  ```json
  {
      "truncate_dim": 256
  }
  ```

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.7707     |
| cosine_accuracy@3   | 0.8823     |
| cosine_accuracy@5   | 0.9016     |
| cosine_accuracy@10  | 0.9191     |
| cosine_precision@1  | 0.7707     |
| cosine_precision@3  | 0.2941     |
| cosine_precision@5  | 0.1803     |
| cosine_precision@10 | 0.0919     |
| cosine_recall@1     | 0.7707     |
| cosine_recall@3     | 0.8823     |
| cosine_recall@5     | 0.9016     |
| cosine_recall@10    | 0.9191     |
| **cosine_ndcg@10**  | **0.8512** |
| cosine_mrr@10       | 0.8287     |
| cosine_map@100      | 0.8303     |

#### Information Retrieval

* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
  ```json
  {
      "truncate_dim": 128
  }
  ```

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.7604     |
| cosine_accuracy@3   | 0.869      |
| cosine_accuracy@5   | 0.8902     |
| cosine_accuracy@10  | 0.9131     |
| cosine_precision@1  | 0.7604     |
| cosine_precision@3  | 0.2897     |
| cosine_precision@5  | 0.178      |
| cosine_precision@10 | 0.0913     |
| cosine_recall@1     | 0.7604     |
| cosine_recall@3     | 0.869      |
| cosine_recall@5     | 0.8902     |
| cosine_recall@10    | 0.9131     |
| **cosine_ndcg@10**  | **0.8415** |
| cosine_mrr@10       | 0.8181     |
| cosine_map@100      | 0.82       |

#### Information Retrieval

* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
  ```json
  {
      "truncate_dim": 64
  }
  ```

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.7248     |
| cosine_accuracy@3   | 0.8521     |
| cosine_accuracy@5   | 0.8751     |
| cosine_accuracy@10  | 0.8974     |
| cosine_precision@1  | 0.7248     |
| cosine_precision@3  | 0.284      |
| cosine_precision@5  | 0.175      |
| cosine_precision@10 | 0.0897     |
| cosine_recall@1     | 0.7248     |
| cosine_recall@3     | 0.8521     |
| cosine_recall@5     | 0.8751     |
| cosine_recall@10    | 0.8974     |
| **cosine_ndcg@10**  | **0.8182** |
| cosine_mrr@10       | 0.792      |
| cosine_map@100      | 0.7938     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### json

* Dataset: json
* Size: 14,907 training samples
* Columns: <code>query</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                             | answer                                                                             |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             |
  | details | <ul><li>min: 9 tokens</li><li>mean: 25.88 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 34.09 tokens</li><li>max: 340 tokens</li></ul> |
* Samples:
  | query                                                                                       | answer                                                                                                                     |
  |:--------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------|
  | <code>En Valdeconejos, ¿cuál era la sociedad de agricultores en 1952?</code>                | <code>En Valdeconejos, la sociedad de agricultores en 1952 era el Pósito de Agricultores.</code>                           |
  | <code>¿Qué nombres de capataces se registran en el pueblo de Escucha en el año 1952?</code> | <code>En Escucha, en 1952, los capataces registrados son Peralta (Manuel) y Rodriguez (Gonzalo).</code>                    |
  | <code>En el contexto de la minería, ¿qué implica 'despajar'?</code>                         | <code>'Despajar' se refiere a cribar a mano material y desechos para obtener las partes de carbón que hay en ellos.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 32
- `learning_rate`: 2e-05
- `num_train_epochs`: 12
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 32
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 12
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `tp_size`: 0
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch   | Step | Training Loss | dim_1024_cosine_ndcg@10 | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|:-------:|:----:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
| 1.0     | 8    | -             | 0.7663                  | 0.7676                 | 0.7656                 | 0.7626                 | 0.7393                 | 0.6969                |
| 1.2747  | 10   | 127.0406      | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.0     | 16   | -             | 0.8244                  | 0.8240                 | 0.8226                 | 0.8172                 | 0.8060                 | 0.7775                |
| 2.5494  | 20   | 38.8995       | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.0     | 24   | -             | 0.8425                  | 0.8426                 | 0.8444                 | 0.8373                 | 0.8252                 | 0.7996                |
| 3.8240  | 30   | 20.1528       | -                       | -                      | -                      | -                      | -                      | -                     |
| 4.0     | 32   | -             | 0.8526                  | 0.8520                 | 0.8498                 | 0.8456                 | 0.8289                 | 0.8037                |
| 5.0     | 40   | 14.0513       | 0.8550                  | 0.8543                 | 0.8517                 | 0.8490                 | 0.8368                 | 0.8139                |
| 6.0     | 48   | -             | 0.8572                  | 0.8565                 | 0.8557                 | 0.8520                 | 0.8404                 | 0.8170                |
| 6.2747  | 50   | 13.364        | -                       | -                      | -                      | -                      | -                      | -                     |
| 7.0     | 56   | -             | 0.8579                  | 0.8576                 | 0.8553                 | 0.8514                 | 0.8422                 | 0.8180                |
| 7.5494  | 60   | 12.7986       | -                       | -                      | -                      | -                      | -                      | -                     |
| 8.0     | 64   | -             | 0.8573                  | 0.8580                 | 0.8560                 | 0.8523                 | 0.8414                 | 0.8178                |
| 8.8240  | 70   | 12.0091       | -                       | -                      | -                      | -                      | -                      | -                     |
| 9.0     | 72   | -             | 0.8578                  | 0.8586                 | 0.8562                 | 0.8519                 | 0.8423                 | 0.8184                |
| 10.0    | 80   | 10.9468       | 0.8583                  | 0.8589                 | 0.8565                 | 0.8530                 | 0.8413                 | 0.8191                |
| 10.5494 | 84   | -             | 0.8576                  | 0.8588                 | 0.8564                 | 0.8512                 | 0.8415                 | 0.8182                |


### Framework Versions
- Python: 3.12.10
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.7.0+cu126
- Accelerate: 1.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->