csanz91 commited on
Commit
8d8df3e
·
verified ·
1 Parent(s): 3970521

Add new SentenceTransformer model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,1014 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - es
4
+ license: apache-2.0
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:14907
11
+ - loss:MatryoshkaLoss
12
+ - loss:MultipleNegativesRankingLoss
13
+ base_model: jinaai/jina-embeddings-v3
14
+ widget:
15
+ - source_sentence: ¿Qué característica especial tenía la escultura del 'Torico' creada
16
+ por Pedro Blesa?
17
+ sentences:
18
+ - 'Después de dorar el conejo en la receta de Conejo escabechado, en la misma sartén
19
+ se rehogan los ajos, con el laurel y la pimienta.
20
+
21
+ '
22
+ - Rafael Barcelón se encargaba del servicio de electricidad en Valdeconejos en 1951.
23
+ - La escultura del 'Torico' creada por Pedro Blesa era un anaglifo, visible en 3D
24
+ con gafas especiales.
25
+ - source_sentence: ¿Por qué cantidad adquirió Francisco Santacruz la mina Escuadra
26
+ en la subasta pública?
27
+ sentences:
28
+ - Después de la temporada 1986-87, el equipo descendió, lo que provocó su desaparición
29
+ del campeonato en la temporada 1987-88.
30
+ - '''Al bies'' significa en diagonal.'
31
+ - Francisco Santacruz adquirió la mina Escuadra por la cantidad de 931 pesetas.
32
+ - source_sentence: ¿Quién se desempeñaba como fiscal en el ayuntamiento de Escucha
33
+ en el año 1916?
34
+ sentences:
35
+ - El autor mencionado para la receta Sopas de ajo es Teo Martin Lafuente.
36
+ - En Escucha en 1916, D. Joaquín Latorre del Río se desempeñaba como fiscal.
37
+ - Felipe Mallén era el farmacéutico en Valdeconejos en 1928.
38
+ - source_sentence: ¿Qué información transmiten los 'toques' en la caña de un pozo
39
+ durante las operaciones mineras?
40
+ sentences:
41
+ - Juan Pedro Martín encontró fragmentos de carbón de piedra en el paraje de El Horcajo.
42
+ - Se publicó en 1970 por Ediciones Cultura y Acción. CNT.
43
+ - 'Los ''toques'' son señales que se hacen en la caña del pozo para las distintas
44
+ operaciones 1: alto 2: arriba 3: abajo 1+2: despacio arriba 1+3: despacio abajo
45
+ 4+2: personal arriba 4+3: personal abajo 4+1+2: señalista en jaula arriba 4+1+3:
46
+ señalista en jaula abajo 5: jaula libre 6: maniobra'
47
+ - source_sentence: ¿En qué año se demarcó y reconoció la mina 'El Pilar'?
48
+ sentences:
49
+ - Según la quinta demanda del SOMM, todas compañías mineras debían entregar a todos
50
+ sus obreros un libramiento de liquidación mensual
51
+ - '''Tontiar'' significa cuando dos jóvenes empiezan con un noviazgo.'
52
+ - La mina 'El Pilar' se demarcó y reconoció en 1857.
53
+ pipeline_tag: sentence-similarity
54
+ library_name: sentence-transformers
55
+ metrics:
56
+ - cosine_accuracy@1
57
+ - cosine_accuracy@3
58
+ - cosine_accuracy@5
59
+ - cosine_accuracy@10
60
+ - cosine_precision@1
61
+ - cosine_precision@3
62
+ - cosine_precision@5
63
+ - cosine_precision@10
64
+ - cosine_recall@1
65
+ - cosine_recall@3
66
+ - cosine_recall@5
67
+ - cosine_recall@10
68
+ - cosine_ndcg@10
69
+ - cosine_mrr@10
70
+ - cosine_map@100
71
+ model-index:
72
+ - name: Lampistero
73
+ results:
74
+ - task:
75
+ type: information-retrieval
76
+ name: Information Retrieval
77
+ dataset:
78
+ name: dim 1024
79
+ type: dim_1024
80
+ metrics:
81
+ - type: cosine_accuracy@1
82
+ value: 0.7700663850331925
83
+ name: Cosine Accuracy@1
84
+ - type: cosine_accuracy@3
85
+ value: 0.8925769462884732
86
+ name: Cosine Accuracy@3
87
+ - type: cosine_accuracy@5
88
+ value: 0.9155099577549789
89
+ name: Cosine Accuracy@5
90
+ - type: cosine_accuracy@10
91
+ value: 0.9330114665057333
92
+ name: Cosine Accuracy@10
93
+ - type: cosine_precision@1
94
+ value: 0.7700663850331925
95
+ name: Cosine Precision@1
96
+ - type: cosine_precision@3
97
+ value: 0.2975256487628244
98
+ name: Cosine Precision@3
99
+ - type: cosine_precision@5
100
+ value: 0.18310199155099577
101
+ name: Cosine Precision@5
102
+ - type: cosine_precision@10
103
+ value: 0.09330114665057333
104
+ name: Cosine Precision@10
105
+ - type: cosine_recall@1
106
+ value: 0.7700663850331925
107
+ name: Cosine Recall@1
108
+ - type: cosine_recall@3
109
+ value: 0.8925769462884732
110
+ name: Cosine Recall@3
111
+ - type: cosine_recall@5
112
+ value: 0.9155099577549789
113
+ name: Cosine Recall@5
114
+ - type: cosine_recall@10
115
+ value: 0.9330114665057333
116
+ name: Cosine Recall@10
117
+ - type: cosine_ndcg@10
118
+ value: 0.8578914781807897
119
+ name: Cosine Ndcg@10
120
+ - type: cosine_mrr@10
121
+ value: 0.8330619976817926
122
+ name: Cosine Mrr@10
123
+ - type: cosine_map@100
124
+ value: 0.8343424106284848
125
+ name: Cosine Map@100
126
+ - task:
127
+ type: information-retrieval
128
+ name: Information Retrieval
129
+ dataset:
130
+ name: dim 768
131
+ type: dim_768
132
+ metrics:
133
+ - type: cosine_accuracy@1
134
+ value: 0.7694628847314424
135
+ name: Cosine Accuracy@1
136
+ - type: cosine_accuracy@3
137
+ value: 0.8889559444779722
138
+ name: Cosine Accuracy@3
139
+ - type: cosine_accuracy@5
140
+ value: 0.9124924562462281
141
+ name: Cosine Accuracy@5
142
+ - type: cosine_accuracy@10
143
+ value: 0.9330114665057333
144
+ name: Cosine Accuracy@10
145
+ - type: cosine_precision@1
146
+ value: 0.7694628847314424
147
+ name: Cosine Precision@1
148
+ - type: cosine_precision@3
149
+ value: 0.29631864815932407
150
+ name: Cosine Precision@3
151
+ - type: cosine_precision@5
152
+ value: 0.1824984912492456
153
+ name: Cosine Precision@5
154
+ - type: cosine_precision@10
155
+ value: 0.09330114665057332
156
+ name: Cosine Precision@10
157
+ - type: cosine_recall@1
158
+ value: 0.7694628847314424
159
+ name: Cosine Recall@1
160
+ - type: cosine_recall@3
161
+ value: 0.8889559444779722
162
+ name: Cosine Recall@3
163
+ - type: cosine_recall@5
164
+ value: 0.9124924562462281
165
+ name: Cosine Recall@5
166
+ - type: cosine_recall@10
167
+ value: 0.9330114665057333
168
+ name: Cosine Recall@10
169
+ - type: cosine_ndcg@10
170
+ value: 0.8571049923900239
171
+ name: Cosine Ndcg@10
172
+ - type: cosine_mrr@10
173
+ value: 0.8320899311243306
174
+ name: Cosine Mrr@10
175
+ - type: cosine_map@100
176
+ value: 0.8333457816447034
177
+ name: Cosine Map@100
178
+ - task:
179
+ type: information-retrieval
180
+ name: Information Retrieval
181
+ dataset:
182
+ name: dim 512
183
+ type: dim_512
184
+ metrics:
185
+ - type: cosine_accuracy@1
186
+ value: 0.7682558841279421
187
+ name: Cosine Accuracy@1
188
+ - type: cosine_accuracy@3
189
+ value: 0.8865419432709717
190
+ name: Cosine Accuracy@3
191
+ - type: cosine_accuracy@5
192
+ value: 0.9112854556427278
193
+ name: Cosine Accuracy@5
194
+ - type: cosine_accuracy@10
195
+ value: 0.9305974652987327
196
+ name: Cosine Accuracy@10
197
+ - type: cosine_precision@1
198
+ value: 0.7682558841279421
199
+ name: Cosine Precision@1
200
+ - type: cosine_precision@3
201
+ value: 0.2955139810903239
202
+ name: Cosine Precision@3
203
+ - type: cosine_precision@5
204
+ value: 0.18225709112854557
205
+ name: Cosine Precision@5
206
+ - type: cosine_precision@10
207
+ value: 0.09305974652987326
208
+ name: Cosine Precision@10
209
+ - type: cosine_recall@1
210
+ value: 0.7682558841279421
211
+ name: Cosine Recall@1
212
+ - type: cosine_recall@3
213
+ value: 0.8865419432709717
214
+ name: Cosine Recall@3
215
+ - type: cosine_recall@5
216
+ value: 0.9112854556427278
217
+ name: Cosine Recall@5
218
+ - type: cosine_recall@10
219
+ value: 0.9305974652987327
220
+ name: Cosine Recall@10
221
+ - type: cosine_ndcg@10
222
+ value: 0.8555277012951626
223
+ name: Cosine Ndcg@10
224
+ - type: cosine_mrr@10
225
+ value: 0.8307227155597702
226
+ name: Cosine Mrr@10
227
+ - type: cosine_map@100
228
+ value: 0.8321030396467847
229
+ name: Cosine Map@100
230
+ - task:
231
+ type: information-retrieval
232
+ name: Information Retrieval
233
+ dataset:
234
+ name: dim 256
235
+ type: dim_256
236
+ metrics:
237
+ - type: cosine_accuracy@1
238
+ value: 0.764031382015691
239
+ name: Cosine Accuracy@1
240
+ - type: cosine_accuracy@3
241
+ value: 0.8901629450814725
242
+ name: Cosine Accuracy@3
243
+ - type: cosine_accuracy@5
244
+ value: 0.9082679541339771
245
+ name: Cosine Accuracy@5
246
+ - type: cosine_accuracy@10
247
+ value: 0.9299939649969825
248
+ name: Cosine Accuracy@10
249
+ - type: cosine_precision@1
250
+ value: 0.764031382015691
251
+ name: Cosine Precision@1
252
+ - type: cosine_precision@3
253
+ value: 0.2967209816938242
254
+ name: Cosine Precision@3
255
+ - type: cosine_precision@5
256
+ value: 0.1816535908267954
257
+ name: Cosine Precision@5
258
+ - type: cosine_precision@10
259
+ value: 0.09299939649969825
260
+ name: Cosine Precision@10
261
+ - type: cosine_recall@1
262
+ value: 0.764031382015691
263
+ name: Cosine Recall@1
264
+ - type: cosine_recall@3
265
+ value: 0.8901629450814725
266
+ name: Cosine Recall@3
267
+ - type: cosine_recall@5
268
+ value: 0.9082679541339771
269
+ name: Cosine Recall@5
270
+ - type: cosine_recall@10
271
+ value: 0.9299939649969825
272
+ name: Cosine Recall@10
273
+ - type: cosine_ndcg@10
274
+ value: 0.8535167149096011
275
+ name: Cosine Ndcg@10
276
+ - type: cosine_mrr@10
277
+ value: 0.8282907530342651
278
+ name: Cosine Mrr@10
279
+ - type: cosine_map@100
280
+ value: 0.8296119986031772
281
+ name: Cosine Map@100
282
+ - task:
283
+ type: information-retrieval
284
+ name: Information Retrieval
285
+ dataset:
286
+ name: dim 128
287
+ type: dim_128
288
+ metrics:
289
+ - type: cosine_accuracy@1
290
+ value: 0.7447193723596862
291
+ name: Cosine Accuracy@1
292
+ - type: cosine_accuracy@3
293
+ value: 0.8768859384429692
294
+ name: Cosine Accuracy@3
295
+ - type: cosine_accuracy@5
296
+ value: 0.9028364514182257
297
+ name: Cosine Accuracy@5
298
+ - type: cosine_accuracy@10
299
+ value: 0.9215449607724804
300
+ name: Cosine Accuracy@10
301
+ - type: cosine_precision@1
302
+ value: 0.7447193723596862
303
+ name: Cosine Precision@1
304
+ - type: cosine_precision@3
305
+ value: 0.2922953128143231
306
+ name: Cosine Precision@3
307
+ - type: cosine_precision@5
308
+ value: 0.1805672902836451
309
+ name: Cosine Precision@5
310
+ - type: cosine_precision@10
311
+ value: 0.09215449607724803
312
+ name: Cosine Precision@10
313
+ - type: cosine_recall@1
314
+ value: 0.7447193723596862
315
+ name: Cosine Recall@1
316
+ - type: cosine_recall@3
317
+ value: 0.8768859384429692
318
+ name: Cosine Recall@3
319
+ - type: cosine_recall@5
320
+ value: 0.9028364514182257
321
+ name: Cosine Recall@5
322
+ - type: cosine_recall@10
323
+ value: 0.9215449607724804
324
+ name: Cosine Recall@10
325
+ - type: cosine_ndcg@10
326
+ value: 0.8402664516336745
327
+ name: Cosine Ndcg@10
328
+ - type: cosine_mrr@10
329
+ value: 0.8133905221714518
330
+ name: Cosine Mrr@10
331
+ - type: cosine_map@100
332
+ value: 0.8148588407289652
333
+ name: Cosine Map@100
334
+ - task:
335
+ type: information-retrieval
336
+ name: Information Retrieval
337
+ dataset:
338
+ name: dim 64
339
+ type: dim_64
340
+ metrics:
341
+ - type: cosine_accuracy@1
342
+ value: 0.7103198551599276
343
+ name: Cosine Accuracy@1
344
+ - type: cosine_accuracy@3
345
+ value: 0.8491249245624622
346
+ name: Cosine Accuracy@3
347
+ - type: cosine_accuracy@5
348
+ value: 0.8780929390464696
349
+ name: Cosine Accuracy@5
350
+ - type: cosine_accuracy@10
351
+ value: 0.899818949909475
352
+ name: Cosine Accuracy@10
353
+ - type: cosine_precision@1
354
+ value: 0.7103198551599276
355
+ name: Cosine Precision@1
356
+ - type: cosine_precision@3
357
+ value: 0.2830416415208208
358
+ name: Cosine Precision@3
359
+ - type: cosine_precision@5
360
+ value: 0.1756185878092939
361
+ name: Cosine Precision@5
362
+ - type: cosine_precision@10
363
+ value: 0.08998189499094747
364
+ name: Cosine Precision@10
365
+ - type: cosine_recall@1
366
+ value: 0.7103198551599276
367
+ name: Cosine Recall@1
368
+ - type: cosine_recall@3
369
+ value: 0.8491249245624622
370
+ name: Cosine Recall@3
371
+ - type: cosine_recall@5
372
+ value: 0.8780929390464696
373
+ name: Cosine Recall@5
374
+ - type: cosine_recall@10
375
+ value: 0.899818949909475
376
+ name: Cosine Recall@10
377
+ - type: cosine_ndcg@10
378
+ value: 0.8119294706592789
379
+ name: Cosine Ndcg@10
380
+ - type: cosine_mrr@10
381
+ value: 0.7829293234091058
382
+ name: Cosine Mrr@10
383
+ - type: cosine_map@100
384
+ value: 0.7850878407159746
385
+ name: Cosine Map@100
386
+ ---
387
+
388
+ # Lampistero
389
+
390
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [jinaai/jina-embeddings-v3](https://huggingface.co/jinaai/jina-embeddings-v3) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
391
+
392
+ ## Model Details
393
+
394
+ ### Model Description
395
+ - **Model Type:** Sentence Transformer
396
+ - **Base model:** [jinaai/jina-embeddings-v3](https://huggingface.co/jinaai/jina-embeddings-v3) <!-- at revision f1944de8402dcd5f2b03f822a4bc22a7f2de2eb9 -->
397
+ - **Maximum Sequence Length:** 8194 tokens
398
+ - **Output Dimensionality:** 1024 dimensions
399
+ - **Similarity Function:** Cosine Similarity
400
+ - **Training Dataset:**
401
+ - json
402
+ - **Language:** es
403
+ - **License:** apache-2.0
404
+
405
+ ### Model Sources
406
+
407
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
408
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
409
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
410
+
411
+ ### Full Model Architecture
412
+
413
+ ```
414
+ SentenceTransformer(
415
+ (transformer): Transformer(
416
+ (auto_model): XLMRobertaLoRA(
417
+ (roberta): XLMRobertaModel(
418
+ (embeddings): XLMRobertaEmbeddings(
419
+ (word_embeddings): ParametrizedEmbedding(
420
+ 250002, 1024, padding_idx=1
421
+ (parametrizations): ModuleDict(
422
+ (weight): ParametrizationList(
423
+ (0): LoRAParametrization()
424
+ )
425
+ )
426
+ )
427
+ (token_type_embeddings): ParametrizedEmbedding(
428
+ 1, 1024
429
+ (parametrizations): ModuleDict(
430
+ (weight): ParametrizationList(
431
+ (0): LoRAParametrization()
432
+ )
433
+ )
434
+ )
435
+ )
436
+ (emb_drop): Dropout(p=0.1, inplace=False)
437
+ (emb_ln): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
438
+ (encoder): XLMRobertaEncoder(
439
+ (layers): ModuleList(
440
+ (0-23): 24 x Block(
441
+ (mixer): MHA(
442
+ (rotary_emb): RotaryEmbedding()
443
+ (Wqkv): ParametrizedLinearResidual(
444
+ in_features=1024, out_features=3072, bias=True
445
+ (parametrizations): ModuleDict(
446
+ (weight): ParametrizationList(
447
+ (0): LoRAParametrization()
448
+ )
449
+ )
450
+ )
451
+ (inner_attn): FlashSelfAttention(
452
+ (drop): Dropout(p=0.1, inplace=False)
453
+ )
454
+ (inner_cross_attn): FlashCrossAttention(
455
+ (drop): Dropout(p=0.1, inplace=False)
456
+ )
457
+ (out_proj): ParametrizedLinear(
458
+ in_features=1024, out_features=1024, bias=True
459
+ (parametrizations): ModuleDict(
460
+ (weight): ParametrizationList(
461
+ (0): LoRAParametrization()
462
+ )
463
+ )
464
+ )
465
+ )
466
+ (dropout1): Dropout(p=0.1, inplace=False)
467
+ (drop_path1): StochasticDepth(p=0.0, mode=row)
468
+ (norm1): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
469
+ (mlp): Mlp(
470
+ (fc1): ParametrizedLinear(
471
+ in_features=1024, out_features=4096, bias=True
472
+ (parametrizations): ModuleDict(
473
+ (weight): ParametrizationList(
474
+ (0): LoRAParametrization()
475
+ )
476
+ )
477
+ )
478
+ (fc2): ParametrizedLinear(
479
+ in_features=4096, out_features=1024, bias=True
480
+ (parametrizations): ModuleDict(
481
+ (weight): ParametrizationList(
482
+ (0): LoRAParametrization()
483
+ )
484
+ )
485
+ )
486
+ )
487
+ (dropout2): Dropout(p=0.1, inplace=False)
488
+ (drop_path2): StochasticDepth(p=0.0, mode=row)
489
+ (norm2): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
490
+ )
491
+ )
492
+ )
493
+ (pooler): XLMRobertaPooler(
494
+ (dense): ParametrizedLinear(
495
+ in_features=1024, out_features=1024, bias=True
496
+ (parametrizations): ModuleDict(
497
+ (weight): ParametrizationList(
498
+ (0): LoRAParametrization()
499
+ )
500
+ )
501
+ )
502
+ (activation): Tanh()
503
+ )
504
+ )
505
+ )
506
+ )
507
+ (pooler): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
508
+ (normalizer): Normalize()
509
+ )
510
+ ```
511
+
512
+ ## Usage
513
+
514
+ ### Direct Usage (Sentence Transformers)
515
+
516
+ First install the Sentence Transformers library:
517
+
518
+ ```bash
519
+ pip install -U sentence-transformers
520
+ ```
521
+
522
+ Then you can load this model and run inference.
523
+ ```python
524
+ from sentence_transformers import SentenceTransformer
525
+
526
+ # Download from the 🤗 Hub
527
+ model = SentenceTransformer("csanz91/lampistero_rag_embeddings_2")
528
+ # Run inference
529
+ sentences = [
530
+ "¿En qué año se demarcó y reconoció la mina 'El Pilar'?",
531
+ "La mina 'El Pilar' se demarcó y reconoció en 1857.",
532
+ 'Según la quinta demanda del SOMM, todas compañías mineras debían entregar a todos sus obreros un libramiento de liquidación mensual',
533
+ ]
534
+ embeddings = model.encode(sentences)
535
+ print(embeddings.shape)
536
+ # [3, 1024]
537
+
538
+ # Get the similarity scores for the embeddings
539
+ similarities = model.similarity(embeddings, embeddings)
540
+ print(similarities.shape)
541
+ # [3, 3]
542
+ ```
543
+
544
+ <!--
545
+ ### Direct Usage (Transformers)
546
+
547
+ <details><summary>Click to see the direct usage in Transformers</summary>
548
+
549
+ </details>
550
+ -->
551
+
552
+ <!--
553
+ ### Downstream Usage (Sentence Transformers)
554
+
555
+ You can finetune this model on your own dataset.
556
+
557
+ <details><summary>Click to expand</summary>
558
+
559
+ </details>
560
+ -->
561
+
562
+ <!--
563
+ ### Out-of-Scope Use
564
+
565
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
566
+ -->
567
+
568
+ ## Evaluation
569
+
570
+ ### Metrics
571
+
572
+ #### Information Retrieval
573
+
574
+ * Dataset: `dim_1024`
575
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
576
+ ```json
577
+ {
578
+ "truncate_dim": 1024
579
+ }
580
+ ```
581
+
582
+ | Metric | Value |
583
+ |:--------------------|:-----------|
584
+ | cosine_accuracy@1 | 0.7701 |
585
+ | cosine_accuracy@3 | 0.8926 |
586
+ | cosine_accuracy@5 | 0.9155 |
587
+ | cosine_accuracy@10 | 0.933 |
588
+ | cosine_precision@1 | 0.7701 |
589
+ | cosine_precision@3 | 0.2975 |
590
+ | cosine_precision@5 | 0.1831 |
591
+ | cosine_precision@10 | 0.0933 |
592
+ | cosine_recall@1 | 0.7701 |
593
+ | cosine_recall@3 | 0.8926 |
594
+ | cosine_recall@5 | 0.9155 |
595
+ | cosine_recall@10 | 0.933 |
596
+ | **cosine_ndcg@10** | **0.8579** |
597
+ | cosine_mrr@10 | 0.8331 |
598
+ | cosine_map@100 | 0.8343 |
599
+
600
+ #### Information Retrieval
601
+
602
+ * Dataset: `dim_768`
603
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
604
+ ```json
605
+ {
606
+ "truncate_dim": 768
607
+ }
608
+ ```
609
+
610
+ | Metric | Value |
611
+ |:--------------------|:-----------|
612
+ | cosine_accuracy@1 | 0.7695 |
613
+ | cosine_accuracy@3 | 0.889 |
614
+ | cosine_accuracy@5 | 0.9125 |
615
+ | cosine_accuracy@10 | 0.933 |
616
+ | cosine_precision@1 | 0.7695 |
617
+ | cosine_precision@3 | 0.2963 |
618
+ | cosine_precision@5 | 0.1825 |
619
+ | cosine_precision@10 | 0.0933 |
620
+ | cosine_recall@1 | 0.7695 |
621
+ | cosine_recall@3 | 0.889 |
622
+ | cosine_recall@5 | 0.9125 |
623
+ | cosine_recall@10 | 0.933 |
624
+ | **cosine_ndcg@10** | **0.8571** |
625
+ | cosine_mrr@10 | 0.8321 |
626
+ | cosine_map@100 | 0.8333 |
627
+
628
+ #### Information Retrieval
629
+
630
+ * Dataset: `dim_512`
631
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
632
+ ```json
633
+ {
634
+ "truncate_dim": 512
635
+ }
636
+ ```
637
+
638
+ | Metric | Value |
639
+ |:--------------------|:-----------|
640
+ | cosine_accuracy@1 | 0.7683 |
641
+ | cosine_accuracy@3 | 0.8865 |
642
+ | cosine_accuracy@5 | 0.9113 |
643
+ | cosine_accuracy@10 | 0.9306 |
644
+ | cosine_precision@1 | 0.7683 |
645
+ | cosine_precision@3 | 0.2955 |
646
+ | cosine_precision@5 | 0.1823 |
647
+ | cosine_precision@10 | 0.0931 |
648
+ | cosine_recall@1 | 0.7683 |
649
+ | cosine_recall@3 | 0.8865 |
650
+ | cosine_recall@5 | 0.9113 |
651
+ | cosine_recall@10 | 0.9306 |
652
+ | **cosine_ndcg@10** | **0.8555** |
653
+ | cosine_mrr@10 | 0.8307 |
654
+ | cosine_map@100 | 0.8321 |
655
+
656
+ #### Information Retrieval
657
+
658
+ * Dataset: `dim_256`
659
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
660
+ ```json
661
+ {
662
+ "truncate_dim": 256
663
+ }
664
+ ```
665
+
666
+ | Metric | Value |
667
+ |:--------------------|:-----------|
668
+ | cosine_accuracy@1 | 0.764 |
669
+ | cosine_accuracy@3 | 0.8902 |
670
+ | cosine_accuracy@5 | 0.9083 |
671
+ | cosine_accuracy@10 | 0.93 |
672
+ | cosine_precision@1 | 0.764 |
673
+ | cosine_precision@3 | 0.2967 |
674
+ | cosine_precision@5 | 0.1817 |
675
+ | cosine_precision@10 | 0.093 |
676
+ | cosine_recall@1 | 0.764 |
677
+ | cosine_recall@3 | 0.8902 |
678
+ | cosine_recall@5 | 0.9083 |
679
+ | cosine_recall@10 | 0.93 |
680
+ | **cosine_ndcg@10** | **0.8535** |
681
+ | cosine_mrr@10 | 0.8283 |
682
+ | cosine_map@100 | 0.8296 |
683
+
684
+ #### Information Retrieval
685
+
686
+ * Dataset: `dim_128`
687
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
688
+ ```json
689
+ {
690
+ "truncate_dim": 128
691
+ }
692
+ ```
693
+
694
+ | Metric | Value |
695
+ |:--------------------|:-----------|
696
+ | cosine_accuracy@1 | 0.7447 |
697
+ | cosine_accuracy@3 | 0.8769 |
698
+ | cosine_accuracy@5 | 0.9028 |
699
+ | cosine_accuracy@10 | 0.9215 |
700
+ | cosine_precision@1 | 0.7447 |
701
+ | cosine_precision@3 | 0.2923 |
702
+ | cosine_precision@5 | 0.1806 |
703
+ | cosine_precision@10 | 0.0922 |
704
+ | cosine_recall@1 | 0.7447 |
705
+ | cosine_recall@3 | 0.8769 |
706
+ | cosine_recall@5 | 0.9028 |
707
+ | cosine_recall@10 | 0.9215 |
708
+ | **cosine_ndcg@10** | **0.8403** |
709
+ | cosine_mrr@10 | 0.8134 |
710
+ | cosine_map@100 | 0.8149 |
711
+
712
+ #### Information Retrieval
713
+
714
+ * Dataset: `dim_64`
715
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
716
+ ```json
717
+ {
718
+ "truncate_dim": 64
719
+ }
720
+ ```
721
+
722
+ | Metric | Value |
723
+ |:--------------------|:-----------|
724
+ | cosine_accuracy@1 | 0.7103 |
725
+ | cosine_accuracy@3 | 0.8491 |
726
+ | cosine_accuracy@5 | 0.8781 |
727
+ | cosine_accuracy@10 | 0.8998 |
728
+ | cosine_precision@1 | 0.7103 |
729
+ | cosine_precision@3 | 0.283 |
730
+ | cosine_precision@5 | 0.1756 |
731
+ | cosine_precision@10 | 0.09 |
732
+ | cosine_recall@1 | 0.7103 |
733
+ | cosine_recall@3 | 0.8491 |
734
+ | cosine_recall@5 | 0.8781 |
735
+ | cosine_recall@10 | 0.8998 |
736
+ | **cosine_ndcg@10** | **0.8119** |
737
+ | cosine_mrr@10 | 0.7829 |
738
+ | cosine_map@100 | 0.7851 |
739
+
740
+ <!--
741
+ ## Bias, Risks and Limitations
742
+
743
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
744
+ -->
745
+
746
+ <!--
747
+ ### Recommendations
748
+
749
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
750
+ -->
751
+
752
+ ## Training Details
753
+
754
+ ### Training Dataset
755
+
756
+ #### json
757
+
758
+ * Dataset: json
759
+ * Size: 14,907 training samples
760
+ * Columns: <code>query</code> and <code>answer</code>
761
+ * Approximate statistics based on the first 1000 samples:
762
+ | | query | answer |
763
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
764
+ | type | string | string |
765
+ | details | <ul><li>min: 9 tokens</li><li>mean: 26.09 tokens</li><li>max: 66 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 34.02 tokens</li><li>max: 405 tokens</li></ul> |
766
+ * Samples:
767
+ | query | answer |
768
+ |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
769
+ | <code>¿Qué tipos de palas se utilizan para cargar el carbón y el mineral?</code> | <code>Se utiliza una pala convencional y una pala hidráulica, esta última descarga sobre un páncer, puede hacerlo lateralmente y se desplaza sobre ruedas u oruga.</code> |
770
+ | <code>Tras el cierre de la tejería de Florencio Salvador, ¿de dónde procedieron finalmente los ladrillos para las doscientas diez viviendas construidas en Utrillas?</code> | <code>Los ladrillos y material para las doscientas diez viviendas construidas en Utrillas procedieron finalmente de Letux, Zaragoza .</code> |
771
+ | <code>¿Cuál es el formato de los juegos infantiles que se están preparando para el verano en Escucha en 2021?</code> | <code>Los juegos infantiles que se están preparando para el verano en Escucha en 2021 están en formato revista.</code> |
772
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
773
+ ```json
774
+ {
775
+ "loss": "MultipleNegativesRankingLoss",
776
+ "matryoshka_dims": [
777
+ 1024,
778
+ 768,
779
+ 512,
780
+ 256,
781
+ 128,
782
+ 64
783
+ ],
784
+ "matryoshka_weights": [
785
+ 1,
786
+ 1,
787
+ 1,
788
+ 1,
789
+ 1,
790
+ 1
791
+ ],
792
+ "n_dims_per_step": -1
793
+ }
794
+ ```
795
+
796
+ ### Training Hyperparameters
797
+ #### Non-Default Hyperparameters
798
+
799
+ - `eval_strategy`: epoch
800
+ - `per_device_train_batch_size`: 64
801
+ - `per_device_eval_batch_size`: 16
802
+ - `gradient_accumulation_steps`: 32
803
+ - `learning_rate`: 2e-05
804
+ - `num_train_epochs`: 8
805
+ - `lr_scheduler_type`: cosine
806
+ - `warmup_ratio`: 0.1
807
+ - `tf32`: True
808
+ - `load_best_model_at_end`: True
809
+ - `optim`: adamw_torch_fused
810
+ - `batch_sampler`: no_duplicates
811
+
812
+ #### All Hyperparameters
813
+ <details><summary>Click to expand</summary>
814
+
815
+ - `overwrite_output_dir`: False
816
+ - `do_predict`: False
817
+ - `eval_strategy`: epoch
818
+ - `prediction_loss_only`: True
819
+ - `per_device_train_batch_size`: 64
820
+ - `per_device_eval_batch_size`: 16
821
+ - `per_gpu_train_batch_size`: None
822
+ - `per_gpu_eval_batch_size`: None
823
+ - `gradient_accumulation_steps`: 32
824
+ - `eval_accumulation_steps`: None
825
+ - `torch_empty_cache_steps`: None
826
+ - `learning_rate`: 2e-05
827
+ - `weight_decay`: 0.0
828
+ - `adam_beta1`: 0.9
829
+ - `adam_beta2`: 0.999
830
+ - `adam_epsilon`: 1e-08
831
+ - `max_grad_norm`: 1.0
832
+ - `num_train_epochs`: 8
833
+ - `max_steps`: -1
834
+ - `lr_scheduler_type`: cosine
835
+ - `lr_scheduler_kwargs`: {}
836
+ - `warmup_ratio`: 0.1
837
+ - `warmup_steps`: 0
838
+ - `log_level`: passive
839
+ - `log_level_replica`: warning
840
+ - `log_on_each_node`: True
841
+ - `logging_nan_inf_filter`: True
842
+ - `save_safetensors`: True
843
+ - `save_on_each_node`: False
844
+ - `save_only_model`: False
845
+ - `restore_callback_states_from_checkpoint`: False
846
+ - `no_cuda`: False
847
+ - `use_cpu`: False
848
+ - `use_mps_device`: False
849
+ - `seed`: 42
850
+ - `data_seed`: None
851
+ - `jit_mode_eval`: False
852
+ - `use_ipex`: False
853
+ - `bf16`: False
854
+ - `fp16`: False
855
+ - `fp16_opt_level`: O1
856
+ - `half_precision_backend`: auto
857
+ - `bf16_full_eval`: False
858
+ - `fp16_full_eval`: False
859
+ - `tf32`: True
860
+ - `local_rank`: 0
861
+ - `ddp_backend`: None
862
+ - `tpu_num_cores`: None
863
+ - `tpu_metrics_debug`: False
864
+ - `debug`: []
865
+ - `dataloader_drop_last`: False
866
+ - `dataloader_num_workers`: 0
867
+ - `dataloader_prefetch_factor`: None
868
+ - `past_index`: -1
869
+ - `disable_tqdm`: False
870
+ - `remove_unused_columns`: True
871
+ - `label_names`: None
872
+ - `load_best_model_at_end`: True
873
+ - `ignore_data_skip`: False
874
+ - `fsdp`: []
875
+ - `fsdp_min_num_params`: 0
876
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
877
+ - `tp_size`: 0
878
+ - `fsdp_transformer_layer_cls_to_wrap`: None
879
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
880
+ - `deepspeed`: None
881
+ - `label_smoothing_factor`: 0.0
882
+ - `optim`: adamw_torch_fused
883
+ - `optim_args`: None
884
+ - `adafactor`: False
885
+ - `group_by_length`: False
886
+ - `length_column_name`: length
887
+ - `ddp_find_unused_parameters`: None
888
+ - `ddp_bucket_cap_mb`: None
889
+ - `ddp_broadcast_buffers`: False
890
+ - `dataloader_pin_memory`: True
891
+ - `dataloader_persistent_workers`: False
892
+ - `skip_memory_metrics`: True
893
+ - `use_legacy_prediction_loop`: False
894
+ - `push_to_hub`: False
895
+ - `resume_from_checkpoint`: None
896
+ - `hub_model_id`: None
897
+ - `hub_strategy`: every_save
898
+ - `hub_private_repo`: None
899
+ - `hub_always_push`: False
900
+ - `gradient_checkpointing`: False
901
+ - `gradient_checkpointing_kwargs`: None
902
+ - `include_inputs_for_metrics`: False
903
+ - `include_for_metrics`: []
904
+ - `eval_do_concat_batches`: True
905
+ - `fp16_backend`: auto
906
+ - `push_to_hub_model_id`: None
907
+ - `push_to_hub_organization`: None
908
+ - `mp_parameters`:
909
+ - `auto_find_batch_size`: False
910
+ - `full_determinism`: False
911
+ - `torchdynamo`: None
912
+ - `ray_scope`: last
913
+ - `ddp_timeout`: 1800
914
+ - `torch_compile`: False
915
+ - `torch_compile_backend`: None
916
+ - `torch_compile_mode`: None
917
+ - `include_tokens_per_second`: False
918
+ - `include_num_input_tokens_seen`: False
919
+ - `neftune_noise_alpha`: None
920
+ - `optim_target_modules`: None
921
+ - `batch_eval_metrics`: False
922
+ - `eval_on_start`: False
923
+ - `use_liger_kernel`: False
924
+ - `eval_use_gather_object`: False
925
+ - `average_tokens_across_devices`: False
926
+ - `prompts`: None
927
+ - `batch_sampler`: no_duplicates
928
+ - `multi_dataset_batch_sampler`: proportional
929
+
930
+ </details>
931
+
932
+ ### Training Logs
933
+ | Epoch | Step | Training Loss | dim_1024_cosine_ndcg@10 | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
934
+ |:------:|:----:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
935
+ | 1.0 | 8 | - | 0.7841 | 0.7835 | 0.7836 | 0.7791 | 0.7665 | 0.7226 |
936
+ | 1.2747 | 10 | 58.1187 | - | - | - | - | - | - |
937
+ | 2.0 | 16 | - | 0.8348 | 0.8366 | 0.8345 | 0.8301 | 0.8184 | 0.7861 |
938
+ | 2.5494 | 20 | 24.4181 | - | - | - | - | - | - |
939
+ | 3.0 | 24 | - | 0.8521 | 0.8504 | 0.8503 | 0.8457 | 0.8319 | 0.8007 |
940
+ | 3.8240 | 30 | 16.1488 | - | - | - | - | - | - |
941
+ | 4.0 | 32 | - | 0.8561 | 0.8548 | 0.8555 | 0.8509 | 0.8387 | 0.8073 |
942
+ | 5.0 | 40 | 13.4897 | 0.8585 | 0.8556 | 0.8545 | 0.8528 | 0.8397 | 0.8111 |
943
+ | 6.0 | 48 | - | 0.8578 | 0.8563 | 0.8550 | 0.8535 | 0.8410 | 0.8110 |
944
+ | 6.2747 | 50 | 13.7469 | - | - | - | - | - | - |
945
+ | 7.0 | 56 | - | 0.8579 | 0.8571 | 0.8555 | 0.8535 | 0.8403 | 0.8119 |
946
+
947
+
948
+ ### Framework Versions
949
+ - Python: 3.12.10
950
+ - Sentence Transformers: 4.1.0
951
+ - Transformers: 4.51.3
952
+ - PyTorch: 2.7.0+cu126
953
+ - Accelerate: 1.7.0
954
+ - Datasets: 3.6.0
955
+ - Tokenizers: 0.21.1
956
+
957
+ ## Citation
958
+
959
+ ### BibTeX
960
+
961
+ #### Sentence Transformers
962
+ ```bibtex
963
+ @inproceedings{reimers-2019-sentence-bert,
964
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
965
+ author = "Reimers, Nils and Gurevych, Iryna",
966
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
967
+ month = "11",
968
+ year = "2019",
969
+ publisher = "Association for Computational Linguistics",
970
+ url = "https://arxiv.org/abs/1908.10084",
971
+ }
972
+ ```
973
+
974
+ #### MatryoshkaLoss
975
+ ```bibtex
976
+ @misc{kusupati2024matryoshka,
977
+ title={Matryoshka Representation Learning},
978
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
979
+ year={2024},
980
+ eprint={2205.13147},
981
+ archivePrefix={arXiv},
982
+ primaryClass={cs.LG}
983
+ }
984
+ ```
985
+
986
+ #### MultipleNegativesRankingLoss
987
+ ```bibtex
988
+ @misc{henderson2017efficient,
989
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
990
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
991
+ year={2017},
992
+ eprint={1705.00652},
993
+ archivePrefix={arXiv},
994
+ primaryClass={cs.CL}
995
+ }
996
+ ```
997
+
998
+ <!--
999
+ ## Glossary
1000
+
1001
+ *Clearly define terms in order to be accessible across audiences.*
1002
+ -->
1003
+
1004
+ <!--
1005
+ ## Model Card Authors
1006
+
1007
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
1008
+ -->
1009
+
1010
+ <!--
1011
+ ## Model Card Contact
1012
+
1013
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
1014
+ -->
config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "XLMRobertaLoRA"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "auto_map": {
7
+ "AutoConfig": "jinaai/xlm-roberta-flash-implementation--configuration_xlm_roberta.XLMRobertaFlashConfig",
8
+ "AutoModel": "jinaai/xlm-roberta-flash-implementation--modeling_lora.XLMRobertaLoRA",
9
+ "AutoModelForMaskedLM": "jinaai/xlm-roberta-flash-implementation--modeling_xlm_roberta.XLMRobertaForMaskedLM",
10
+ "AutoModelForPreTraining": "jinaai/xlm-roberta-flash-implementation--modeling_xlm_roberta.XLMRobertaForPreTraining"
11
+ },
12
+ "bos_token_id": 0,
13
+ "classifier_dropout": null,
14
+ "emb_pooler": null,
15
+ "eos_token_id": 2,
16
+ "hidden_act": "gelu",
17
+ "hidden_dropout_prob": 0.1,
18
+ "hidden_size": 1024,
19
+ "initializer_range": 0.02,
20
+ "intermediate_size": 4096,
21
+ "layer_norm_eps": 1e-05,
22
+ "load_trained_adapters": true,
23
+ "lora_adaptations": [
24
+ "retrieval.query",
25
+ "retrieval.passage",
26
+ "separation",
27
+ "classification",
28
+ "text-matching"
29
+ ],
30
+ "lora_alpha": 1,
31
+ "lora_dropout_p": 0.0,
32
+ "lora_main_params_trainable": true,
33
+ "lora_rank": 4,
34
+ "matryoshka_dimensions": [
35
+ 32,
36
+ 64,
37
+ 128,
38
+ 256,
39
+ 512,
40
+ 768,
41
+ 1024
42
+ ],
43
+ "max_position_embeddings": 8194,
44
+ "model_type": "xlm-roberta",
45
+ "num_attention_heads": 16,
46
+ "num_hidden_layers": 24,
47
+ "output_past": true,
48
+ "pad_token_id": 1,
49
+ "position_embedding_type": "rotary",
50
+ "rotary_emb_base": 20000.0,
51
+ "task_instructions": {
52
+ "classification": "",
53
+ "retrieval.passage": "Represent the document for retrieval: ",
54
+ "retrieval.query": "Represent the query for retrieving evidence documents: ",
55
+ "separation": "",
56
+ "text-matching": ""
57
+ },
58
+ "torch_dtype": "bfloat16",
59
+ "transformers_version": "4.51.3",
60
+ "truncate_dim": null,
61
+ "type_vocab_size": 1,
62
+ "use_cache": true,
63
+ "use_flash_attn": true,
64
+ "use_reentrant": false,
65
+ "vocab_size": 250002
66
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.1.0",
4
+ "transformers": "4.51.3",
5
+ "pytorch": "2.7.0+cu126"
6
+ },
7
+ "prompts": {
8
+ "retrieval.query": "Represent the query for retrieving evidence documents: ",
9
+ "retrieval.passage": "Represent the document for retrieval: ",
10
+ "separation": "",
11
+ "classification": "",
12
+ "text-matching": ""
13
+ },
14
+ "default_prompt_name": null,
15
+ "similarity_fn_name": "cosine"
16
+ }
custom_st.py ADDED
@@ -0,0 +1,229 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import logging
3
+ import os
4
+ from io import BytesIO
5
+ from typing import Any, Dict, List, Optional, Tuple, Union
6
+
7
+ import torch
8
+ from torch import nn
9
+ from transformers import AutoConfig, AutoModel, AutoTokenizer
10
+
11
+ logger = logging.getLogger(__name__)
12
+
13
+
14
+ class Transformer(nn.Module):
15
+ """Huggingface AutoModel to generate token embeddings.
16
+ Loads the correct class, e.g. BERT / RoBERTa etc.
17
+
18
+ Args:
19
+ model_name_or_path: Huggingface models name
20
+ (https://huggingface.co/models)
21
+ max_seq_length: Truncate any inputs longer than max_seq_length
22
+ model_args: Keyword arguments passed to the Huggingface
23
+ Transformers model
24
+ tokenizer_args: Keyword arguments passed to the Huggingface
25
+ Transformers tokenizer
26
+ config_args: Keyword arguments passed to the Huggingface
27
+ Transformers config
28
+ cache_dir: Cache dir for Huggingface Transformers to store/load
29
+ models
30
+ do_lower_case: If true, lowercases the input (independent if the
31
+ model is cased or not)
32
+ tokenizer_name_or_path: Name or path of the tokenizer. When
33
+ None, then model_name_or_path is used
34
+ """
35
+
36
+ save_in_root: bool = True
37
+
38
+ def __init__(
39
+ self,
40
+ model_name_or_path: str,
41
+ max_seq_length: int = None,
42
+ model_args: Dict[str, Any] = None,
43
+ tokenizer_args: Dict[str, Any] = None,
44
+ config_args: Dict[str, Any] = None,
45
+ cache_dir: str = None,
46
+ do_lower_case: bool = False,
47
+ tokenizer_name_or_path: str = None,
48
+ **kwargs,
49
+ ) -> None:
50
+ super().__init__()
51
+ self.config_keys = ["max_seq_length", "do_lower_case"]
52
+ self.do_lower_case = do_lower_case
53
+ if model_args is None:
54
+ model_args = {}
55
+ if tokenizer_args is None:
56
+ tokenizer_args = {}
57
+ if config_args is None:
58
+ config_args = {}
59
+
60
+ if kwargs.get("backend", "torch") != "torch":
61
+ logger.warning(
62
+ f'"jinaai/jina-embeddings-v3" is currently not compatible with the {kwargs["backend"]} backend. '
63
+ 'Continuing with the "torch" backend.'
64
+ )
65
+
66
+ self.config = AutoConfig.from_pretrained(model_name_or_path, **config_args, cache_dir=cache_dir)
67
+
68
+ self._lora_adaptations = self.config.lora_adaptations
69
+ if (
70
+ not isinstance(self._lora_adaptations, list)
71
+ or len(self._lora_adaptations) < 1
72
+ ):
73
+ raise ValueError(
74
+ f"`lora_adaptations` must be a list and contain at least one element"
75
+ )
76
+ self._adaptation_map = {
77
+ name: idx for idx, name in enumerate(self._lora_adaptations)
78
+ }
79
+
80
+ self.default_task = model_args.pop('default_task', None)
81
+
82
+ self.auto_model = AutoModel.from_pretrained(model_name_or_path, config=self.config, cache_dir=cache_dir, **model_args)
83
+
84
+ if max_seq_length is not None and "model_max_length" not in tokenizer_args:
85
+ tokenizer_args["model_max_length"] = max_seq_length
86
+ self.tokenizer = AutoTokenizer.from_pretrained(
87
+ tokenizer_name_or_path if tokenizer_name_or_path is not None else model_name_or_path,
88
+ cache_dir=cache_dir,
89
+ **tokenizer_args,
90
+ )
91
+
92
+ # No max_seq_length set. Try to infer from model
93
+ if max_seq_length is None:
94
+ if (
95
+ hasattr(self.auto_model, "config")
96
+ and hasattr(self.auto_model.config, "max_position_embeddings")
97
+ and hasattr(self.tokenizer, "model_max_length")
98
+ ):
99
+ max_seq_length = min(self.auto_model.config.max_position_embeddings, self.tokenizer.model_max_length)
100
+
101
+ self.max_seq_length = max_seq_length
102
+
103
+ if tokenizer_name_or_path is not None:
104
+ self.auto_model.config.tokenizer_class = self.tokenizer.__class__.__name__
105
+
106
+
107
+ @property
108
+ def default_task(self):
109
+ return self._default_task
110
+
111
+ @default_task.setter
112
+ def default_task(self, task: Union[None, str]):
113
+ self._validate_task(task)
114
+ self._default_task = task
115
+
116
+
117
+ def _validate_task(self, task: str):
118
+ if task and task not in self._lora_adaptations:
119
+ raise ValueError(
120
+ f"Unsupported task '{task}'. "
121
+ f"Supported tasks are: {', '.join(self.config.lora_adaptations)}. "
122
+ f"Alternatively, don't pass the `task` argument to disable LoRA."
123
+ )
124
+
125
+ def forward(
126
+ self, features: Dict[str, torch.Tensor], task: Optional[str] = None
127
+ ) -> Dict[str, torch.Tensor]:
128
+ """Returns token_embeddings, cls_token"""
129
+ self._validate_task(task)
130
+ task = task or self.default_task
131
+ adapter_mask = None
132
+ if task:
133
+ task_id = self._adaptation_map[task]
134
+ num_examples = features['input_ids'].size(0)
135
+ adapter_mask = torch.full(
136
+ (num_examples,), task_id, dtype=torch.int32, device=features['input_ids'].device
137
+ )
138
+
139
+ lora_arguments = (
140
+ {"adapter_mask": adapter_mask} if adapter_mask is not None else {}
141
+ )
142
+ features.pop('prompt_length', None)
143
+ output_states = self.auto_model.forward(**features, **lora_arguments, return_dict=False)
144
+ output_tokens = output_states[0]
145
+ features.update({"token_embeddings": output_tokens, "attention_mask": features["attention_mask"]})
146
+ return features
147
+
148
+ def get_word_embedding_dimension(self) -> int:
149
+ return self.auto_model.config.hidden_size
150
+
151
+ def tokenize(
152
+ self,
153
+ texts: Union[List[str], List[dict], List[Tuple[str, str]]],
154
+ padding: Union[str, bool] = True
155
+ ) -> Dict[str, torch.Tensor]:
156
+ """Tokenizes a text and maps tokens to token-ids"""
157
+ output = {}
158
+ if isinstance(texts[0], str):
159
+ to_tokenize = [texts]
160
+ elif isinstance(texts[0], dict):
161
+ to_tokenize = []
162
+ output["text_keys"] = []
163
+ for lookup in texts:
164
+ text_key, text = next(iter(lookup.items()))
165
+ to_tokenize.append(text)
166
+ output["text_keys"].append(text_key)
167
+ to_tokenize = [to_tokenize]
168
+ else:
169
+ batch1, batch2 = [], []
170
+ for text_tuple in texts:
171
+ batch1.append(text_tuple[0])
172
+ batch2.append(text_tuple[1])
173
+ to_tokenize = [batch1, batch2]
174
+
175
+ # strip
176
+ to_tokenize = [[str(s).strip() for s in col] for col in to_tokenize]
177
+
178
+ # Lowercase
179
+ if self.do_lower_case:
180
+ to_tokenize = [[s.lower() for s in col] for col in to_tokenize]
181
+
182
+ output.update(
183
+ self.tokenizer(
184
+ *to_tokenize,
185
+ padding=padding,
186
+ truncation="longest_first",
187
+ return_tensors="pt",
188
+ max_length=self.max_seq_length,
189
+ )
190
+ )
191
+ return output
192
+
193
+ def get_config_dict(self) -> Dict[str, Any]:
194
+ return {key: self.__dict__[key] for key in self.config_keys}
195
+
196
+ def save(self, output_path: str, safe_serialization: bool = True) -> None:
197
+ self.auto_model.save_pretrained(output_path, safe_serialization=safe_serialization)
198
+ self.tokenizer.save_pretrained(output_path)
199
+
200
+ with open(os.path.join(output_path, "sentence_bert_config.json"), "w") as fOut:
201
+ json.dump(self.get_config_dict(), fOut, indent=2)
202
+
203
+
204
+ @classmethod
205
+ def load(cls, input_path: str) -> "Transformer":
206
+ # Old classes used other config names than 'sentence_bert_config.json'
207
+ for config_name in [
208
+ "sentence_bert_config.json",
209
+ "sentence_roberta_config.json",
210
+ "sentence_distilbert_config.json",
211
+ "sentence_camembert_config.json",
212
+ "sentence_albert_config.json",
213
+ "sentence_xlm-roberta_config.json",
214
+ "sentence_xlnet_config.json",
215
+ ]:
216
+ sbert_config_path = os.path.join(input_path, config_name)
217
+ if os.path.exists(sbert_config_path):
218
+ break
219
+
220
+ with open(sbert_config_path) as fIn:
221
+ config = json.load(fIn)
222
+ # Don't allow configs to set trust_remote_code
223
+ if "model_args" in config and "trust_remote_code" in config["model_args"]:
224
+ config["model_args"].pop("trust_remote_code")
225
+ if "tokenizer_args" in config and "trust_remote_code" in config["tokenizer_args"]:
226
+ config["tokenizer_args"].pop("trust_remote_code")
227
+ if "config_args" in config and "trust_remote_code" in config["config_args"]:
228
+ config["config_args"].pop("trust_remote_code")
229
+ return cls(model_name_or_path=input_path, **config)
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8c4fbad75813236b810c797155a99953e13fc2afc30e1172f0983da5cf1167dc
3
+ size 1144685320
modules.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "transformer",
5
+ "path": "",
6
+ "type": "custom_st.Transformer",
7
+ "kwargs": [
8
+ "task"
9
+ ]
10
+ },
11
+ {
12
+ "idx": 1,
13
+ "name": "pooler",
14
+ "path": "1_Pooling",
15
+ "type": "sentence_transformers.models.Pooling"
16
+ },
17
+ {
18
+ "idx": 2,
19
+ "name": "normalizer",
20
+ "path": "2_Normalize",
21
+ "type": "sentence_transformers.models.Normalize"
22
+ }
23
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8194,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e19cd8c08f528b481e909f73dbd1fd62b1e8b1117579ba205e477801237f9e0
3
+ size 17082988
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "extra_special_tokens": {},
49
+ "mask_token": "<mask>",
50
+ "model_max_length": 8194,
51
+ "pad_token": "<pad>",
52
+ "sep_token": "</s>",
53
+ "tokenizer_class": "XLMRobertaTokenizerFast",
54
+ "unk_token": "<unk>"
55
+ }