File size: 10,372 Bytes
4595147 3300bd7 4595147 3300bd7 4595147 3300bd7 4595147 3300bd7 4595147 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
---
library_name: transformers
license: cc-by-nc-4.0
pipeline_tag: text-generation
tags:
- text-to-sql
- reinforcement-learning
---
# SLM-SQL: An Exploration of Small Language Models for Text-to-SQL
### Important Links
π[Arxiv Paper](https://arxiv.org/abs/2507.22478) | π€[Hugging Face Paper](https://huggingface.co/papers/2507.22478) | π[GitHub Repository](https://github.com/CycloneBoy/slm_sql) | π€[HuggingFace Collection](https://huggingface.co/collections/cycloneboy/slm-sql-688b02f99f958d7a417658dc) | π€[ModelScope Collection](https://modelscope.cn/collections/SLM-SQL-624bb6a60e9643) |
## News
+ `July 31, 2025`: Upload model to modelscope and huggingface.
+ `July 30, 2025`: Publish the paper to arxiv
## Abstract
Large language models (LLMs) have demonstrated strong performance in translating natural language questions into SQL queries (Text-to-SQL). In contrast, small language models (SLMs) ranging from 0.5B to 1.5B parameters currently underperform on Text-to-SQL tasks due to their limited logical reasoning capabilities. However, SLMs offer inherent advantages in inference speed and suitability for edge deployment. To explore their potential in Text-to-SQL applications, we leverage recent advancements in post-training techniques. Specifically, we used the open-source SynSQL-2.5M dataset to construct two derived datasets: SynSQL-Think-916K for SQL generation and SynSQL-Merge-Think-310K for SQL merge revision. We then applied supervised fine-tuning and reinforcement learning-based post-training to the SLM, followed by inference using a corrective self-consistency approach. Experimental results validate the effectiveness and generalizability of our method, SLM-SQL. On the BIRD development set, the five evaluated models achieved an average improvement of 31.4 points. Notably, the 0.5B model reached 56.87\% execution accuracy (EX), while the 1.5B model achieved 67.08\% EX.
### Framework
<img src="https://raw.githubusercontent.com/CycloneBoy/slm_sql/main/data/image/slmsql_framework.png" height="500" alt="slmsql_framework">
### Main Results
<img src="https://raw.githubusercontent.com/CycloneBoy/slm_sql/main/data/image/slmsql_bird_result.png" height="500" alt="slm_sql_result">
<img src="https://raw.githubusercontent.com/CycloneBoy/slm_sql/main/data/image/slmsql_bird_main.png" height="500" alt="slmsql_bird_main">
<img src="https://raw.githubusercontent.com/CycloneBoy/slm_sql/main/data/image/slmsql_spider_main.png" height="500" alt="slmsql_spider_main">
Performance Comparison of different Text-to-SQL methods on BIRD dev and test dataset.
<img src="https://raw.githubusercontent.com/CycloneBoy/slm_sql/main/data/image/slmsql_ablation_study.png" height="300" alt="slmsql_ablation_study">
## How to Use
You can easily use this model with the Hugging Face `transformers` library. Below is a general example for inference:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# Load the model and tokenizer
model_name = "cycloneboy/SLM-SQL-1.5B" # Example: You can choose other models from the table below
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16, # or torch.float16, adjust based on your GPU
device_map="auto" # Automatically map model to available devices
)
model.eval()
# Example prompt for Text-to-SQL
# Replace this with your natural language query for a specific database schema
prompt = """
[Instruction]: Given the following database schema, generate a SQL query that answers the question.
[Schema]:
CREATE TABLE Student (StuID INT, Name TEXT, Age INT, Sex TEXT, Major TEXT, Advisor INT, Graduated BOOL);
CREATE TABLE Course (CrsID INT, Title TEXT, Dept TEXT, Credits INT);
CREATE TABLE Enrollment (StuID INT, CrsID INT, Grade REAL);
CREATE TABLE Advisor (AdvID INT, Name TEXT, Dept TEXT);
[Question]: What is the average age of students who are taking 'Database' course?
"""
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
# Generate SQL query
outputs = model.generate(
**inputs,
max_new_tokens=256,
num_beams=1, # Adjust for different decoding strategies
do_sample=False,
temperature=0.0,
top_p=1.0,
eos_token_id=tokenizer.eos_token_id
)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(generated_text)
# The output will contain the prompt and the generated SQL.
# You might need to parse the generated_text to extract only the SQL query.
```
## Model
| **Model** | Base Model | Train Method | Modelscope | HuggingFace |
|------------------------------------------|------------------------------|--------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| SLM-SQL-Base-0.5B | Qwen2.5-Coder-0.5B-Instruct | SFT | [π€ Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-Base-0.5B) | [π€ HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-Base-0.5B) |
| SLM-SQL-0.5B | Qwen2.5-Coder-0.5B-Instruct | SFT + GRPO | [π€ Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-0.5B) | [π€ HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-0.5B) |
| CscSQL-Merge-Qwen2.5-Coder-0.5B-Instruct | Qwen2.5-Coder-0.5B-Instruct | SFT + GRPO | [π€ Modelscope](https://modelscope.cn/models/cycloneboy/CscSQL-Merge-Qwen2.5-Coder-0.5B-Instruct) | [π€ HuggingFace](https://huggingface.co/cycloneboy/CscSQL-Merge-Qwen2.5-Coder-0.5B-Instruct) |
| SLM-SQL-Base-1.5B | Qwen2.5-Coder-1.5B-Instruct | SFT | [π€ Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-Base-1.5B) | [π€ HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-Base-1.5B) |
| SLM-SQL-1.5B | Qwen2.5-Coder-1.5B-Instruct | SFT + GRPO | [π€ Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-1.5B) | [π€ HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-1.5B) |
| CscSQL-Merge-Qwen2.5-Coder-1.5B-Instruct | Qwen2.5-Coder-1.5B-Instruct | SFT + GRPO | [π€ Modelscope](https://modelscope.cn/models/cycloneboy/CscSQL-Merge-Qwen2.5-Coder-1.5B-Instruct) | [π€ HuggingFace](https://huggingface.co/cycloneboy/CscSQL-Merge-Qwen2.5-Coder-1.5B-Instruct) |
| SLM-SQL-Base-0.6B | Qwen3-0.6B | SFT | [π€ Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-Base-0.6B) | [π€ HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-Base-0.6B) |
| SLM-SQL-0.6B | Qwen3-0.6B | SFT + GRPO | [π€ Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-0.6B) | [π€ HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-0.6B) |
| SLM-SQL-Base-1.3B | deepseek-coder-1.3b-instruct | SFT | [π€ Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-Base-1.3B ) | [π€ HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-Base-1.3B ) |
| SLM-SQL-1.3B | deepseek-coder-1.3b-instruct | SFT + GRPO | [π€ Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-1.3B ) | [π€ HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-1.3B ) |
| SLM-SQL-Base-1B | Llama-3.2-1B-Instruct | SFT | [π€ Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-Base-1B ) | [π€ HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-Base-1B ) |
## Dataset
| **Dataset** | Modelscope | HuggingFace |
|----------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| SynsQL-Think-916k | [π€ Modelscope](https://modelscope.cn/datasets/cycloneboy/SynsQL-Think-916k) | [π€ HuggingFace](https://huggingface.co/datasets/cycloneboy/SynsQL-Think-916k) |
| SynsQL-Merge-Think-310k | [π€ Modelscope](https://modelscope.cn/datasets/cycloneboy/SynsQL-Merge-Think-310k) | [π€ HuggingFace](https://huggingface.co/datasets/cycloneboy/SynsQL-Merge-Think-310k) |
| bird train and dev dataset | [π€ Modelscope](https://modelscope.cn/datasets/cycloneboy/bird_train) | [π€ HuggingFace](https://huggingface.co/datasets/cycloneboy/bird_train) |
## TODO
- [ ] Release inference code
- [ ] Upload Model
- [ ] Release training code
- [ ] Fix bug
- [ ] Update doc
## Thanks to the following projects
- [csc_sql](https://github.com/CycloneBoy/csc_sql)
- [open-r1](https://github.com/huggingface/open-r1)
- [OmniSQL](https://github.com/RUCKBReasoning/OmniSQL)
## Citation
```bibtex
@misc{sheng2025slmsqlexplorationsmalllanguage,
title={SLM-SQL: An Exploration of Small Language Models for Text-to-SQL},
author={Lei Sheng and Shuai-Shuai Xu},
year={2025},
eprint={2507.22478},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2507.22478},
}
@misc{sheng2025cscsqlcorrectiveselfconsistencytexttosql,
title={CSC-SQL: Corrective Self-Consistency in Text-to-SQL via Reinforcement Learning},
author={Lei Sheng and Shuai-Shuai Xu},
year={2025},
eprint={2505.13271},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2505.13271},
}
``` |