Datasets:
File size: 4,053 Bytes
076a51a fd8bc79 076a51a 14dd349 076a51a 14dd349 076a51a d5d8263 076a51a d5d8263 14dd349 d5d8263 076a51a d5d8263 076a51a d5d8263 076a51a d5d8263 14dd349 d5d8263 076a51a d5d8263 076a51a d5d8263 076a51a 14dd349 d5d8263 076a51a d5d8263 076a51a 14dd349 076a51a 64a3d01 076a51a 14dd349 076a51a fd8bc79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
---
license: cc-by-nc-4.0
task_categories:
- image-classification
language:
- en
tags:
- lithology
- geology
- rock
- drill core
- core images
- lithology identification
- lithology classification
- DCID
pretty_name: Drill Core Image Dataset (DCID)
size_categories:
- 10K<n<100K
---
# Dataset Card for Drill Core Image Dataset (DCID)
## Dataset Details
### Dataset Description
The Drill Core Image Dataset (DCID) is a large-scale benchmark designed for lithology classification based on RGB core images. It provides two primary versions:
- **DCID-7**: 7 lithology categories with 5,000 images per class.
- **DCID-35**: 35 lithology categories with 1,000 images per class.
All original images are 512×512 pixels in resolution. Each category is split into training and testing subsets in an 8:2 ratio. Additional variants are generated by resizing to smaller resolutions (32, 64, 128, 256) and applying real-world data augmentation (RWDA) to simulate image imperfections.
- **Curated by:** Jia-Yu Li, Ji-Zhou Tang, et al.
- **Shared by:** Jia-Yu Li (lijiayu1120@tongji.edu.cn), Ji-Zhou Tang (jeremytang@tongji.edu.cn)
- **License:** CC BY-NC 4.0 (Creative Commons Attribution-NonCommercial 4.0)
---
### Visual Overview
#### DCID Naming Convention
The dataset naming follows the **DCID-R-C-L-I** format:
- `R`: resolution (32, 64, 128, 256, 512)
- `C`: number of categories (7 or 35)
- `L`: RWDA level (0.0 – 0.4)
- `I`: injection scope (`N`, `T`, `E`, `A`)

---
#### DCID-7 Dataset
The **DCID-7** dataset contains 35,000 images (5,000 per category).
Each class has 4,000 training and 1,000 testing images (8:2 ratio).
This version is suitable for evaluating model upper-bound performance.

---
#### DCID-35 Dataset
The **DCID-35** dataset contains 35,000 images (1,000 per category).
Each class has 800 training and 200 testing images.
This fine-grained version is designed to assess model generalization under complex conditions.

---
### Dataset Sources
- **GitHub Repository:** [https://github.com/JiayuLi1120/drill-core-image-dataset](https://github.com/JiayuLi1120/drill-core-image-dataset)
- **Hugging Face Dataset:** [https://huggingface.co/datasets/168sir/drill-core-image-dataset](https://huggingface.co/datasets/168sir/drill-core-image-dataset)
- **Paper:** [https://doi.org/10.1016/j.petsci.2025.04.013](https://doi.org/10.1016/j.petsci.2025.04.013)
---
## Usage
### Step 1: Download and extract
Download the `DCID.zip` archive from [Hugging Face](https://huggingface.co/datasets/168sir/drill-core-image-dataset) and extract it:
```bash
unzip DCID.zip -d ./DCID
````
This will give you the following folders:
* `DCID-512-7/` and `noise-512-7/`
* `DCID-512-35/` and `noise-512-35/`
---
### Step 2: Build custom dataset versions
We provide a script **`build_dcid_dataset.py`** to generate different dataset variants.
Example: Create a **32×32 resolution, 7 classes, 40% RWDA (train set only)** dataset:
```bash
python build_dcid_dataset.py \
--root ./DCID \
--R 32 \
--C 7 \
--L 0.4 \
--I T \
--out_dir ./output
```
This generates a new dataset at:
```
./output/DCID-32-7-0.4-T/
```
---
### Script Parameters
* **`R`**: target resolution (32, 64, 128, 256)
* **`C`**: number of categories (7 or 35)
* **`L`**: RWDA level (0.0–0.4)
* **`I`**: injection scope:
* `N`: none
* `T`: train set only
* `E`: test set only
* `A`: all (train + test)
---
## Citation
If you use this dataset in your work, please cite:
```bibtex
@article{Li2025DCID,
title = {A large-scale, high-quality dataset for lithology identification: Construction and applications},
author = {Jia-Yu Li and Ji-Zhou Tang and Xian-Zheng Zhao and Bo Fan and Wen-Ya Jiang and Shun-Yao Song and Jian-Bing Li and Kai-Da Chen and Zheng-Guang Zhao},
journal = {Petroleum Science},
year = {2025},
issn = {1995-8226},
doi = {10.1016/j.petsci.2025.04.013}
} |