File size: 26,243 Bytes
698f70b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 |
# -*- coding: utf-8 -*-
import os
import shutil
import re
from pypinyin import pinyin, Style
from textgrid import TextGrid, IntervalTier, Interval
import codecs
from collections import defaultdict
# --- Add tqdm ---
# pip install tqdm
from tqdm import tqdm
# --- Configuration ---
SOURCE_DATASET_DIR = r"D:\DiffSingerDatasets\m4singer"
OUTPUT_DATASET_DIR = r"D:\DiffSingerDatasets\m4singer_processed"
OPENCPOP_DICT_PATH = r"D:\DiffSingerDatasets\SOFA\dictionary\opencpop-extension.txt"
CREATE_OUTPUT_DIR_IF_NOT_EXISTS = True
TIME_TOLERANCE = 0.015 # Tolerance for matching interval boundaries
INITIAL_PHONE_SPLIT_FRACTION = 0.2 # Fraction for initial phonemes when splitting
# --- Phoneme Normalization/Simplification Maps ---
# Map from common variations FOUND in TextGrids TO potential TARGET phonemes in the Dictionary
# Focuses on FINALS or single-unit TG phonemes
TEXTGRID_TO_DICT_SIMPLIFY_MAP = {
# Vowel i variations
'i': ['i', 'ir', 'i0'],
# Finals involving i/u glides in TG vs Dict
'iou': ['iu', 'ou', 'o'], # TG iou -> Dict iu/ou or just o (for yo)
'uei': ['ui', 'ei', 'uai'],# TG uei -> Dict ui/ei or huai?
'uen': ['un', 'en', 'vn'], # TG uen -> Dict un/en or qun?
# ü variations (v in dict)
'v': ['v'],
'u': ['u','v'], # TG u -> Dict u OR v (for qu, ju, xu, yu)
've': ['ve'],
'van': ['van','uan'], # TG van -> Dict van OR wan
'vn': ['vn', 'un'], # TG vn -> Dict vn or uen? (less likely)
# ie/ian variations
'ie': ['ie', 'E'],
'ian': ['ian', 'En'],
# Finals involving w glide
'ua': ['a', 'ua'],
'uai': ['ai', 'uai'],
'uan': ['an', 'uan', 'van'], # TG uan -> Dict an/uan OR yuan
'uang': ['ang', 'uang'],
'uo': ['o', 'uo'],
# Finals involving y glide
'ia': ['a', 'ia'],
'iao': ['ao', 'iao'],
'iang': ['ang', 'iang'],
'iong': ['ong', 'iong'],
# Other finals
'ueng': ['ueng', 'ong'],
# Base finals for identity mapping
'a': ['a'], 'o': ['o'], 'e': ['e', 'E'], 'ai': ['ai'], 'ei': ['ei'],
'ao': ['ao'], 'ou': ['ou'], 'an': ['an'], 'en': ['en'], 'ang': ['ang'],
'eng': ['eng'], 'ong': ['ong'], 'in': ['in'], 'un': ['un'], 'ui': ['ui'],
'iu': ['iu'], 'ir': ['ir'], 'i0': ['i0'],
}
# Reverse map (Dictionary phoneme -> potential TextGrid phonemes)
DICT_TO_TEXTGRID_SIMPLIFY_MAP = defaultdict(list)
# --- Helper Functions ---
def parse_opencpop_dict(dict_path):
"""Parses the dictionary, returns map and populates reverse map."""
pinyin_to_phonemes = {}
all_dict_phonemes = set()
try:
with codecs.open(dict_path, 'r', encoding='utf-8') as f: raw_lines = f.readlines()
except UnicodeDecodeError:
try:
with codecs.open(dict_path, 'r', encoding='gbk') as f: raw_lines = f.readlines()
print("Info: Dictionary file read as GBK (UTF-8 failed).")
except Exception as e_inner: print(f"Error reading dictionary {dict_path}: {e_inner}"); return None, None
except FileNotFoundError: print(f"Error: Dictionary file not found at {dict_path}"); return None, None
except Exception as e: print(f"Error reading dictionary {dict_path}: {e}"); return None, None
for line in raw_lines:
line = line.strip()
if not line or '\t' not in line: continue
parts = line.split('\t', 1)
pinyin_key = parts[0].strip(); phonemes_str = parts[1].strip()
phonemes = [ph for ph in phonemes_str.split(' ') if ph]
if pinyin_key and phonemes:
pinyin_to_phonemes[pinyin_key] = phonemes
all_dict_phonemes.update(phonemes)
if 'AP' not in pinyin_to_phonemes: pinyin_to_phonemes['AP'] = ['AP']; all_dict_phonemes.add('AP')
if 'SP' not in pinyin_to_phonemes: pinyin_to_phonemes['SP'] = ['SP']; all_dict_phonemes.add('SP')
# --- Populate DICT_TO_TEXTGRID_SIMPLIFY_MAP ---
DICT_TO_TEXTGRID_SIMPLIFY_MAP.clear()
mapped_dict_phonemes = set()
for tg_form, dict_forms in TEXTGRID_TO_DICT_SIMPLIFY_MAP.items():
for dict_form in dict_forms:
DICT_TO_TEXTGRID_SIMPLIFY_MAP[dict_form].append(tg_form)
mapped_dict_phonemes.add(dict_form)
for ph in all_dict_phonemes: # Identity mapping
if ph not in mapped_dict_phonemes:
DICT_TO_TEXTGRID_SIMPLIFY_MAP[ph].append(ph)
return pinyin_to_phonemes, all_dict_phonemes
def get_song_pinyin_name(name):
"""Converts a song name to a safe pinyin filename."""
try:
contains_chinese = any('\u4e00' <= char <= '\u9fff' for char in name)
if not contains_chinese:
safe_name = name.lower().strip()
safe_name = re.sub(r'\s+', '_', safe_name); safe_name = re.sub(r'[^a-z0-9_]+', '', safe_name)
safe_name = re.sub(r'_+', '_', safe_name).strip('_'); return safe_name if safe_name else "unknown_song"
pinyin_list = pinyin(name, style=Style.NORMAL, errors='ignore')
if not pinyin_list: raise ValueError("pypinyin returned empty list or failed")
flat_pinyin = "_".join([item[0] for item in pinyin_list if item and item[0]])
safe_name = re.sub(r'[^\w_]+', '', flat_pinyin).lower()
safe_name = re.sub(r'_+', '_', safe_name).strip('_'); return safe_name if safe_name else "unknown_song"
except Exception as e:
print(f"Info: Could not convert '{name}' to pinyin ({e}). Using fallback cleaning.")
safe_name = re.sub(r'[^\w]+', '_', name).strip('_').lower(); return safe_name if safe_name else "unknown_song"
def clean_special_symbols(text):
"""Removes < > brackets."""
if isinstance(text, str) and text.startswith('<') and text.endswith('>'): return text[1:-1]
return text
def get_phoneme_intervals_for_char(char_interval, phone_tier, tolerance):
"""Finds the sequence of original phone INTERVALS corresponding to the char_interval."""
char_mark_cleaned = clean_special_symbols(char_interval.mark)
if char_mark_cleaned in ['AP', 'SP']:
found_interval = None; min_diff = float('inf')
for phn_interval in phone_tier:
time_diff = abs(phn_interval.minTime - char_interval.minTime) + abs(phn_interval.maxTime - char_interval.maxTime)
mark_match = clean_special_symbols(phn_interval.mark) == char_mark_cleaned
if time_diff < tolerance and mark_match:
if time_diff < min_diff: found_interval = phn_interval; min_diff = time_diff
if found_interval: return [found_interval]
else: print(f"Warning: No phone interval found for {char_mark_cleaned} char interval [{char_interval.minTime:.3f}-{char_interval.maxTime:.3f}]."); return None
start_phone_idx, end_phone_idx = -1, -1
min_start_diff, min_end_diff = float('inf'), float('inf')
for i, phn_interval in enumerate(phone_tier):
diff = abs(phn_interval.minTime - char_interval.minTime)
if diff < tolerance and diff < min_start_diff: min_start_diff = diff; start_phone_idx = i
if start_phone_idx != -1:
search_start_index = start_phone_idx; max_expected_end_time = char_interval.maxTime + tolerance * 5
for i in range(search_start_index, len(phone_tier)):
phn_interval = phone_tier[i]
if phn_interval.minTime > char_interval.maxTime + tolerance: break
if phn_interval.maxTime > max_expected_end_time and end_phone_idx != -1: break
diff = abs(phn_interval.maxTime - char_interval.maxTime)
if diff < tolerance:
if diff < min_end_diff: min_end_diff = diff; end_phone_idx = i
elif end_phone_idx == -1 and diff < tolerance * 2:
if diff < min_end_diff: min_end_diff = diff; end_phone_idx = i
if start_phone_idx != -1 and end_phone_idx != -1 and end_phone_idx >= start_phone_idx:
intervals = [phone_tier[i] for i in range(start_phone_idx, end_phone_idx + 1)]
non_sil_intervals = [iv for iv in intervals if clean_special_symbols(iv.mark) not in ['AP', 'SP', ''] and iv.mark and iv.mark.strip()]
if non_sil_intervals: return non_sil_intervals
elif intervals: print(f"Warning: Found time range for char '{char_interval.mark}' but only silence/empty phones within. [{char_interval.minTime:.3f}-{char_interval.maxTime:.3f}]"); return None
else: return None
else: print(f"Warning: Could not determine phone interval sequence for char '{char_interval.mark}' interval [{char_interval.minTime:.3f}-{char_interval.maxTime:.3f}]. (Start diff: {min_start_diff:.4f}, End diff: {min_end_diff:.4f})."); return None
def fuzzy_match_sequences(found_phones, expected_phones):
"""More robust fuzzy matching based on specific patterns."""
if not found_phones or not expected_phones: return False
if found_phones == expected_phones: return True
f_str = "".join(found_phones)
e_str = "".join(expected_phones)
if f_str == e_str: return True
if len(expected_phones) == 2 and expected_phones[0] in ['y', 'w'] and len(found_phones) == 1:
expected_final = expected_phones[1]; found_final_tg = found_phones[0]
if found_final_tg in DICT_TO_TEXTGRID_SIMPLIFY_MAP.get(expected_final, []): return True
if len(expected_phones) == 1 and len(found_phones) == 2 and found_phones[0] in ['y', 'w']:
expected_final = expected_phones[0]; found_final_tg = found_phones[1]
if found_final_tg in DICT_TO_TEXTGRID_SIMPLIFY_MAP.get(expected_final, []): return True
if len(found_phones) == len(expected_phones):
match = True; initial = expected_phones[0] if len(expected_phones) > 0 else None
for i in range(len(found_phones)):
f_ph, e_ph = found_phones[i], expected_phones[i]
possible_tg_forms = DICT_TO_TEXTGRID_SIMPLIFY_MAP.get(e_ph, [e_ph])
if f_ph == e_ph or f_ph in possible_tg_forms: continue
if e_ph == 'v' and f_ph == 'u' and initial in 'jqxy': continue
if e_ph == 'van' and f_ph == 'uan' and initial in 'jqxy': continue
if e_ph == 'vn' and f_ph == 'un' and initial in 'jqxy': continue
if e_ph == 'uai' and f_ph == 'uei' and initial == 'h': continue
if e_ph == 'ui' and f_ph == 'uei' and initial != 'h': continue
if e_ph == 'iang' and f_ph == 'ang' and initial == 'x': continue
match = False; break
if match: return True
return False
def get_correct_pinyin_and_map(char_mark, original_phone_intervals, pinyin_phoneme_map):
"""Determines best pinyin, handling '嗯' and direct joined check."""
cleaned_char = clean_special_symbols(char_mark)
if not cleaned_char or cleaned_char.isspace(): return cleaned_char, None
if cleaned_char in ['AP', 'SP']: return cleaned_char, [cleaned_char]
try: possible_pinyins_raw = pinyin(cleaned_char, style=Style.NORMAL, heteronym=True)[0]
except Exception as e: print(f"Error getting pinyin for '{cleaned_char}': {e}."); return "?", None
possible_pinyins = []
if cleaned_char == '嗯':
for p in possible_pinyins_raw:
if p == 'n': possible_pinyins.append('en')
elif p == 'ng': possible_pinyins.append('eng')
else: possible_pinyins.append(p)
if not possible_pinyins: possible_pinyins = ['en']
else: possible_pinyins = possible_pinyins_raw
if original_phone_intervals is None:
chosen_pinyin = possible_pinyins[0]
print(f"Warning: Defaulting pinyin '{cleaned_char}'->'{chosen_pinyin}' due to phone mapping error.")
target_phones = pinyin_phoneme_map.get(chosen_pinyin)
if target_phones is None: print(f"Error: Default pinyin '{chosen_pinyin}' for char '{cleaned_char}' not in dictionary!")
return chosen_pinyin, target_phones
found_phones_clean = [clean_special_symbols(iv.mark) for iv in original_phone_intervals]
found_phones_str = " ".join(found_phones_clean)
joined_found_phones = "".join(found_phones_clean)
best_match_pinyin = None; match_type = "No Match"
if joined_found_phones in pinyin_phoneme_map: # Direct joined check first
best_match_pinyin = joined_found_phones; match_type = "Direct Joined"
if match_type == "No Match": # Exact sequence check
for pyn in possible_pinyins:
if pyn in pinyin_phoneme_map:
if " ".join(pinyin_phoneme_map[pyn]) == found_phones_str:
best_match_pinyin = pyn; match_type = "Exact"; break
if match_type == "No Match": # Fuzzy sequence check
fuzzy_matches = []
for pyn in possible_pinyins:
if pyn in pinyin_phoneme_map:
if fuzzy_match_sequences(found_phones_clean, pinyin_phoneme_map[pyn]): fuzzy_matches.append(pyn)
if len(fuzzy_matches) == 1: best_match_pinyin = fuzzy_matches[0]; match_type = "Fuzzy"
elif len(fuzzy_matches) > 1: print(f"Warning: Ambiguous fuzzy match for '{cleaned_char}' ('{found_phones_str}'). Matches: {fuzzy_matches}. Defaulting."); match_type = "Default"; best_match_pinyin = possible_pinyins[0]
else: match_type = "Default"; best_match_pinyin = possible_pinyins[0]
chosen_pinyin = best_match_pinyin if best_match_pinyin else possible_pinyins[0]
if cleaned_char == '嗯': # Ensure n/ng aren't chosen if en/eng exist
if chosen_pinyin == 'n' and 'en' in pinyin_phoneme_map: chosen_pinyin = 'en'
elif chosen_pinyin == 'ng' and 'eng' in pinyin_phoneme_map: chosen_pinyin = 'eng'
if match_type == "Default":
expected_details = {p: pinyin_phoneme_map.get(p, ["Not in Dict"]) for p in possible_pinyins}
warning_msg = f"Warning: No reliable match for phonemes '{found_phones_str}' (derived for char '{cleaned_char}'). Possible pinyins: {possible_pinyins}. "
warning_msg += ", ".join([f"Expected for '{p}': {det}" for p, det in expected_details.items()]) + "."
warning_msg += f" Defaulting to pinyin: {chosen_pinyin}"
print(warning_msg)
target_phonemes = pinyin_phoneme_map.get(chosen_pinyin)
if target_phonemes is None:
print(f"Error: Chosen pinyin '{chosen_pinyin}' for char '{cleaned_char}' not in dictionary!")
if cleaned_char == '嗯':
if 'en' in pinyin_phoneme_map: chosen_pinyin, target_phonemes = 'en', pinyin_phoneme_map['en']
elif 'eng' in pinyin_phoneme_map: chosen_pinyin, target_phonemes = 'eng', pinyin_phoneme_map['eng']
return chosen_pinyin, target_phonemes
def process_textgrid_file(tg_path, pinyin_phoneme_map, tolerance, split_fraction):
"""Processes a single TextGrid file with duration splitting."""
try: tg = TextGrid.fromFile(tg_path)
except Exception as e: print(f"Error reading TG {tg_path}: {e}"); return None
if len(tg.tiers) < 2: print(f"Warning: TG {tg_path} has < 2 tiers."); return None
original_word_tier, original_phone_tier = None, None
tier_names = [t.name.lower() if t.name else "" for t in tg.tiers]
try:
word_indices = [i for i, name in enumerate(tier_names) if name and ("word" in name or "hanzi" in name or "char" in name)]
phone_indices = [i for i, name in enumerate(tier_names) if name and ("phone" in name or "syllable" in name or "phoneme" in name or "pinyin" in name)]
if word_indices: original_word_tier = tg.tiers[word_indices[0]]
if phone_indices: original_phone_tier = tg.tiers[phone_indices[0]]
except Exception: pass
if original_word_tier is None: original_word_tier = tg.tiers[0]
if original_phone_tier is None:
if len(tg.tiers) > 1: original_phone_tier = tg.tiers[1]
else: print(f"Error: Cannot identify phone tier in {tg_path}."); return None
new_word_tier = IntervalTier(name="words", minTime=tg.minTime, maxTime=tg.maxTime)
new_phone_tier = IntervalTier(name="phones", minTime=tg.minTime, maxTime=tg.maxTime)
last_word_max_time = tg.minTime; last_phone_max_time = tg.minTime
for word_interval in original_word_tier:
if word_interval.minTime > last_word_max_time + tolerance: new_word_tier.addInterval(Interval(last_word_max_time, word_interval.minTime, ""))
if word_interval.minTime > last_phone_max_time + tolerance: new_phone_tier.addInterval(Interval(last_phone_max_time, word_interval.minTime, ""))
if not word_interval.mark and word_interval.maxTime > word_interval.minTime:
new_word_tier.addInterval(Interval(word_interval.minTime, word_interval.maxTime, ""))
new_phone_tier.addInterval(Interval(word_interval.minTime, word_interval.maxTime, ""))
last_word_max_time = max(last_word_max_time, word_interval.maxTime); last_phone_max_time = max(last_phone_max_time, word_interval.maxTime)
continue
elif not word_interval.mark or word_interval.maxTime <= word_interval.minTime: continue
original_phone_intervals = get_phoneme_intervals_for_char(word_interval, original_phone_tier, tolerance)
chosen_pinyin, target_phonemes = get_correct_pinyin_and_map(word_interval.mark, original_phone_intervals, pinyin_phoneme_map)
new_word_tier.addInterval(Interval(word_interval.minTime, word_interval.maxTime, chosen_pinyin))
last_word_max_time = max(last_word_max_time, word_interval.maxTime)
if target_phonemes and original_phone_intervals:
n_target, n_orig = len(target_phonemes), len(original_phone_intervals)
if n_target == n_orig: # Case 1: Match
for i in range(n_target):
orig_iv = original_phone_intervals[i]
if orig_iv.maxTime > orig_iv.minTime: new_phone_tier.addInterval(Interval(orig_iv.minTime, orig_iv.maxTime, target_phonemes[i])); last_phone_max_time = max(last_phone_max_time, orig_iv.maxTime)
elif n_target == 1: # Case 2: Single Target
total_min_time = original_phone_intervals[0].minTime; total_max_time = original_phone_intervals[-1].maxTime
if total_max_time > total_min_time: new_phone_tier.addInterval(Interval(total_min_time, total_max_time, target_phonemes[0])); last_phone_max_time = max(last_phone_max_time, total_max_time)
# Case 3: Splitting (Target > Original)
elif n_target > n_orig and n_orig >= 1:
orig_min = original_phone_intervals[0].minTime; orig_max = original_phone_intervals[-1].maxTime; orig_dur = orig_max - orig_min
if orig_dur > 1e-6:
use_initial_split = (n_orig == 1) # Apply special fraction only if original was truly single
short_dur = 0 # Initialize short_dur
if use_initial_split: short_dur = orig_dur * split_fraction # Calculate if needed
split_dur = orig_dur / n_target # Default equal split duration for other cases or later phones
phone_start_time = orig_min
for i in range(n_target - 1):
current_split_dur = short_dur if use_initial_split and i==0 else split_dur # Determine duration for this phone
phone_end_time = min(phone_start_time + current_split_dur , orig_max)
if phone_end_time > phone_start_time: new_phone_tier.addInterval(Interval(phone_start_time, phone_end_time, target_phonemes[i]))
phone_start_time = phone_end_time
# Last phoneme takes remaining duration
if orig_max > phone_start_time: new_phone_tier.addInterval(Interval(phone_start_time, orig_max, target_phonemes[n_target - 1]))
last_phone_max_time = max(last_phone_max_time, orig_max)
else: print(f"Warning: Orig phone interval for '{word_interval.mark}' zero duration. Cannot split."); new_phone_tier.addInterval(Interval(word_interval.minTime, word_interval.maxTime, "")); last_phone_max_time = max(last_phone_max_time, word_interval.maxTime)
# Case 4: Fallback (includes n_target < n_orig)
else:
print(f"Warning: Phoneme length mismatch for '{word_interval.mark}' ({chosen_pinyin}). T:{n_target}{target_phonemes}, O:{n_orig}. Copying original.")
temp_last_phone_time = word_interval.minTime
for iv in original_phone_intervals:
cleaned_mark = clean_special_symbols(iv.mark)
if cleaned_mark and cleaned_mark not in ['AP', 'SP'] and iv.maxTime > iv.minTime: new_phone_tier.addInterval(Interval(iv.minTime, iv.maxTime, cleaned_mark)); temp_last_phone_time = max(temp_last_phone_time, iv.maxTime)
last_phone_max_time = max(last_phone_max_time, temp_last_phone_time)
elif chosen_pinyin in ['AP','SP']:
if word_interval.maxTime > word_interval.minTime: new_phone_tier.addInterval(Interval(word_interval.minTime, word_interval.maxTime, chosen_pinyin)); last_phone_max_time = max(last_phone_max_time, word_interval.maxTime)
else:
if word_interval.maxTime > word_interval.minTime: new_phone_tier.addInterval(Interval(word_interval.minTime, word_interval.maxTime, "")); last_phone_max_time = max(last_phone_max_time, word_interval.maxTime)
last_phone_max_time = max(last_phone_max_time, last_word_max_time)
if tg.maxTime > last_word_max_time + tolerance: new_word_tier.addInterval(Interval(last_word_max_time, tg.maxTime, ""))
if tg.maxTime > last_phone_max_time + tolerance: new_phone_tier.addInterval(Interval(last_phone_max_time, tg.maxTime, ""))
processed_tg = TextGrid(name=os.path.basename(tg_path), minTime=tg.minTime, maxTime=tg.maxTime)
processed_tg.append(new_word_tier); processed_tg.append(new_phone_tier)
return processed_tg
# --- Main Processing Logic ---
if __name__ == "__main__":
print("Starting M4Singer dataset processing...")
print(f"Source Directory: {SOURCE_DATASET_DIR}")
print(f"Output Directory: {OUTPUT_DATASET_DIR}")
print(f"Dictionary File: {OPENCPOP_DICT_PATH}")
pinyin_phoneme_map, _ = parse_opencpop_dict(OPENCPOP_DICT_PATH)
if pinyin_phoneme_map is None: print("Error: Failed to load dictionary."); exit(1)
print(f"Loaded Pinyin->Phoneme dictionary with {len(pinyin_phoneme_map)} entries.")
if not os.path.isdir(SOURCE_DATASET_DIR): print(f"Error: Source dir '{SOURCE_DATASET_DIR}' not found."); exit(1)
if not os.path.isdir(OUTPUT_DATASET_DIR):
if CREATE_OUTPUT_DIR_IF_NOT_EXISTS:
print(f"Output dir '{OUTPUT_DATASET_DIR}' not found, creating.")
try: os.makedirs(OUTPUT_DATASET_DIR)
except OSError as e: print(f"Error creating output dir {OUTPUT_DATASET_DIR}: {e}"); exit(1)
else: print(f"Error: Output dir '{OUTPUT_DATASET_DIR}' not found."); exit(1)
processed_files_count = 0; processed_songs = 0; skipped_dirs = 0; total_dirs = 0
singer_song_dirs = []
try:
all_entries = os.listdir(SOURCE_DATASET_DIR)
singer_song_dirs = [d for d in all_entries if os.path.isdir(os.path.join(SOURCE_DATASET_DIR, d)) and '#' in d]
total_dirs = len(singer_song_dirs)
except OSError as e: print(f"Error accessing source {SOURCE_DATASET_DIR}: {e}"); exit(1)
print(f"Found {total_dirs} potential singer/song directories.")
for singer_song_dir in tqdm(singer_song_dirs, desc="Processing Singers/Songs", unit="song"):
parts = singer_song_dir.split('#', 1)
if len(parts) != 2: skipped_dirs += 1; continue
singer_id, song_name_original = parts[0], parts[1]
song_name_pinyin = get_song_pinyin_name(song_name_original)
source_song_path = os.path.join(SOURCE_DATASET_DIR, singer_song_dir)
output_singer_dir = os.path.join(OUTPUT_DATASET_DIR, singer_id)
output_wav_dir = os.path.join(output_singer_dir, "wav")
output_tg_dir = os.path.join(output_singer_dir, "TextGrid")
try: os.makedirs(output_wav_dir, exist_ok=True); os.makedirs(output_tg_dir, exist_ok=True)
except OSError as e: print(f"Error creating output subdirs for {singer_id}: {e}"); skipped_dirs += 1; continue
try: files_in_song = sorted([f for f in os.listdir(source_song_path) if f.lower().endswith(".wav")])
except OSError as e: print(f"Error reading files in {source_song_path}: {e}"); skipped_dirs += 1; continue
processed_song_flag = False
for filename in files_in_song:
base_name = os.path.splitext(filename)[0]; segment_id = base_name
if not segment_id.isdigit(): continue
wav_filename = filename; tg_filename = f"{base_name}.TextGrid"
source_wav_path = os.path.join(source_song_path, wav_filename)
source_tg_path = os.path.join(source_song_path, tg_filename)
if not os.path.exists(source_tg_path): continue
new_base_filename = f"{segment_id}_{song_name_pinyin}"
output_wav_path = os.path.join(output_wav_dir, f"{new_base_filename}.wav")
output_tg_path = os.path.join(output_tg_dir, f"{new_base_filename}.TextGrid")
processed_tg = process_textgrid_file(source_tg_path, pinyin_phoneme_map, TIME_TOLERANCE, INITIAL_PHONE_SPLIT_FRACTION)
if processed_tg:
try: shutil.copy2(source_wav_path, output_wav_path)
except Exception as e: print(f" Error copying WAV {wav_filename}: {e}"); continue
try:
processed_tg.write(output_tg_path)
processed_files_count += 1; processed_song_flag = True
except Exception as e:
print(f" Error writing TG to {output_tg_path}: {e}")
if os.path.exists(output_wav_path):
try: os.remove(output_wav_path)
except OSError as re: print(f" Error removing {output_wav_path}: {re}")
if processed_song_flag: processed_songs += 1
print(f"\n--- Processing Summary ---")
print(f"Total directories found: {total_dirs}")
print(f"Directories processed (at least one file): {processed_songs}")
print(f"Directories skipped (format error, read error, etc.): {skipped_dirs}")
print(f"Total TextGrid/WAV pairs successfully processed: {processed_files_count}")
print(f"Output data saved in: {OUTPUT_DATASET_DIR}")
print("--- Done ---") |