Date
string | india_vix
float64 | rsi_14
float64 | ma_50
float64 | ma_200
float64 | regime
int64 |
|---|---|---|---|---|---|
2015-10-23
| 8,295.450195
| 34.61122
| 20.6624
| 17.89865
| 1
|
2015-10-26
| 8,260.549805
| 41.437422
| 20.6892
| 17.9158
| 0
|
2015-10-27
| 8,232.900391
| 38.561175
| 20.671
| 17.92775
| 1
|
2015-10-28
| 8,171.200195
| 41.718164
| 20.6714
| 17.92585
| 1
|
2015-10-29
| 8,111.75
| 45.004878
| 20.7026
| 17.92305
| 0
|
2015-10-30
| 8,065.799805
| 46.799834
| 20.731
| 17.9301
| 0
|
2015-11-02
| 8,050.799805
| 55.19844
| 20.7934
| 17.9477
| 0
|
2015-11-03
| 8,060.700195
| 55.576069
| 20.851
| 17.96495
| 0
|
2015-11-04
| 8,040.200195
| 54.342858
| 20.8986
| 17.97935
| 0
|
2015-11-05
| 7,955.450195
| 53.892116
| 20.9422
| 17.98955
| 0
|
2015-11-06
| 7,954.299805
| 54.92739
| 20.769
| 18.0061
| 0
|
2015-11-09
| 7,915.200195
| 41.409655
| 20.5728
| 18.00495
| 0
|
2015-11-10
| 7,783.350098
| 40.482438
| 20.399
| 18.00085
| 0
|
2015-11-13
| 7,762.25
| 45.604233
| 20.3112
| 18.00275
| 0
|
2015-11-16
| 7,806.600098
| 46.982379
| 20.2022
| 18.0036
| 0
|
2015-11-17
| 7,837.549805
| 42.40472
| 20.0496
| 17.9956
| 0
|
2015-11-18
| 7,731.799805
| 45.245794
| 19.8236
| 17.99325
| 0
|
2015-11-19
| 7,842.75
| 38.133209
| 19.6074
| 17.982
| 1
|
2015-11-20
| 7,856.549805
| 38.528393
| 19.443
| 17.96265
| 1
|
2015-11-23
| 7,849.25
| 45.853753
| 19.2562
| 17.9509
| 0
|
2015-11-24
| 7,831.600098
| 42.057313
| 19.0542
| 17.9313
| 1
|
2015-11-26
| 7,883.799805
| 44.672499
| 18.8966
| 17.9127
| 1
|
2015-11-27
| 7,942.700195
| 44.915893
| 18.7452
| 17.8973
| 1
|
2015-11-30
| 7,935.25
| 43.374683
| 18.5788
| 17.8792
| 1
|
2015-12-01
| 7,954.899902
| 39.528228
| 18.392
| 17.8543
| 1
|
2015-12-02
| 7,931.350098
| 38.82422
| 18.2154
| 17.8283
| 1
|
2015-12-03
| 7,864.149902
| 42.980101
| 18.0618
| 17.7985
| 1
|
2015-12-04
| 7,781.899902
| 43.198818
| 17.9436
| 17.773
| 1
|
2015-12-07
| 7,765.399902
| 41.928701
| 17.8952
| 17.74985
| 1
|
2015-12-08
| 7,701.700195
| 42.752631
| 17.851
| 17.7289
| 1
|
2015-12-09
| 7,612.5
| 48.708815
| 17.7786
| 17.71205
| 1
|
2015-12-10
| 7,683.299805
| 45.741615
| 17.6906
| 17.68935
| 1
|
2015-12-11
| 7,610.450195
| 52.098075
| 17.6166
| 17.6707
| 1
|
2015-12-14
| 7,650.049805
| 55.968003
| 17.5392
| 17.6577
| 1
|
2015-12-15
| 7,700.899902
| 52.574298
| 17.4546
| 17.63805
| 1
|
2015-12-16
| 7,750.899902
| 48.384452
| 17.3966
| 17.61355
| 1
|
2015-12-17
| 7,844.350098
| 35.757045
| 17.2962
| 17.5769
| 1
|
2015-12-18
| 7,761.950195
| 37.64231
| 17.2034
| 17.54545
| 1
|
2015-12-21
| 7,834.450195
| 36.530581
| 17.1018
| 17.5137
| 1
|
2015-12-22
| 7,786.100098
| 38.414037
| 17.0046
| 17.48825
| 1
|
2015-12-23
| 7,865.950195
| 34.729276
| 16.8864
| 17.47725
| 1
|
2015-12-24
| 7,861.049805
| 35.531645
| 16.7828
| 17.46855
| 1
|
2015-12-28
| 7,925.149902
| 40.639618
| 16.6884
| 17.46455
| 1
|
2015-12-29
| 7,928.950195
| 39.803601
| 16.6128
| 17.46355
| 1
|
2015-12-30
| 7,896.25
| 40.706692
| 16.5454
| 17.45625
| 1
|
2015-12-31
| 7,946.350098
| 38.025849
| 16.4794
| 17.44795
| 1
|
2016-01-01
| 7,946.350098
| 41.402548
| 16.4392
| 17.4436
| 1
|
2016-01-04
| 7,791.299805
| 57.787964
| 16.4384
| 17.45405
| 1
|
2016-01-05
| 7,784.649902
| 56.858853
| 16.4324
| 17.4627
| 1
|
2016-01-06
| 7,741
| 55.823234
| 16.431
| 17.46955
| 1
|
2016-01-07
| 7,568.299805
| 66.409155
| 16.4864
| 17.4887
| 1
|
2016-01-08
| 7,601.350098
| 59.071785
| 16.4978
| 17.50015
| 1
|
2016-01-11
| 7,563.850098
| 62.495613
| 16.5408
| 17.5176
| 1
|
2016-01-12
| 7,510.299805
| 62.571381
| 16.5742
| 17.53985
| 1
|
2016-01-13
| 7,562.399902
| 60.213173
| 16.5896
| 17.56025
| 1
|
2016-01-14
| 7,536.799805
| 61.34624
| 16.6042
| 17.58495
| 1
|
2016-01-15
| 7,437.799805
| 64.717351
| 16.603
| 17.61635
| 1
|
2016-01-18
| 7,351
| 67.746642
| 16.6164
| 17.6417
| 0
|
2016-01-19
| 7,435.100098
| 56.19928
| 16.5978
| 17.66135
| 1
|
2016-01-20
| 7,309.299805
| 65.210591
| 16.6314
| 17.6949
| 0
|
2016-01-21
| 7,276.799805
| 64.313004
| 16.6582
| 17.7265
| 0
|
2016-01-22
| 7,422.450195
| 54.301719
| 16.6938
| 17.75225
| 0
|
2016-01-25
| 7,436.149902
| 51.897198
| 16.7226
| 17.77075
| 0
|
2016-01-27
| 7,437.75
| 54.980824
| 16.7508
| 17.7948
| 0
|
2016-01-28
| 7,424.649902
| 49.920415
| 16.7512
| 17.81255
| 0
|
2016-01-29
| 7,563.549805
| 47.255419
| 16.7566
| 17.82665
| 0
|
2016-02-01
| 7,555.950195
| 50.081803
| 16.766
| 17.8448
| 0
|
2016-02-02
| 7,455.549805
| 50.737849
| 16.81
| 17.86255
| 0
|
2016-02-03
| 7,361.799805
| 53.16819
| 16.8638
| 17.8824
| 0
|
2016-02-04
| 7,404
| 51.285596
| 16.8864
| 17.8987
| 0
|
2016-02-05
| 7,489.100098
| 50.776081
| 16.9236
| 17.91405
| 0
|
2016-02-08
| 7,387.25
| 59.98165
| 16.995
| 17.93385
| 0
|
2016-02-09
| 7,298.200195
| 64.825256
| 17.095
| 17.95735
| 0
|
2016-02-10
| 7,215.700195
| 66.99116
| 17.2158
| 17.98365
| 0
|
2016-02-11
| 6,976.350098
| 74.872202
| 17.4224
| 18.021
| 0
|
2016-02-12
| 6,980.950195
| 68.345098
| 17.606
| 18.0488
| 0
|
2016-02-15
| 7,162.950195
| 58.646303
| 17.7324
| 18.067
| 0
|
2016-02-16
| 7,048.25
| 60.390917
| 17.8714
| 18.09515
| 0
|
2016-02-17
| 7,108.450195
| 55.747519
| 17.9906
| 18.1181
| 0
|
2016-02-18
| 7,191.75
| 54.479929
| 18.101
| 18.1394
| 0
|
2016-02-19
| 7,210.75
| 52.331616
| 18.1848
| 18.15745
| 0
|
2016-02-22
| 7,234.549805
| 52.684133
| 18.2794
| 18.17575
| 0
|
2016-02-23
| 7,109.549805
| 61.361721
| 18.4126
| 18.1966
| 0
|
2016-02-24
| 7,018.700195
| 57.79939
| 18.5158
| 18.21315
| 0
|
2016-02-25
| 6,970.600098
| 56.949725
| 18.624
| 18.23135
| 0
|
2016-02-26
| 7,029.75
| 53.406738
| 18.7268
| 18.24755
| 0
|
2016-02-29
| 6,987.049805
| 47.254665
| 18.8456
| 18.2456
| 0
|
2016-03-01
| 7,222.299805
| 42.645012
| 18.9292
| 18.2355
| 0
|
2016-03-02
| 7,368.850098
| 43.910486
| 19.0244
| 18.22695
| 0
|
2016-03-03
| 7,475.600098
| 41.017107
| 19.0956
| 18.21805
| 0
|
2016-03-04
| 7,485.350098
| 40.53268
| 19.1802
| 18.21795
| 0
|
2016-03-08
| 7,485.299805
| 43.196769
| 19.2746
| 18.21895
| 0
|
2016-03-09
| 7,531.799805
| 40.05261
| 19.3368
| 18.2179
| 0
|
2016-03-10
| 7,486.149902
| 41.902676
| 19.41
| 18.22035
| 0
|
2016-03-11
| 7,510.200195
| 39.228275
| 19.465
| 18.2211
| 0
|
2016-03-14
| 7,538.75
| 39.228275
| 19.5296
| 18.22195
| 0
|
2016-03-15
| 7,460.600098
| 41.915445
| 19.5964
| 18.2246
| 0
|
2016-03-16
| 7,498.75
| 40.046614
| 19.6018
| 18.22375
| 1
|
2016-03-17
| 7,512.549805
| 39.01439
| 19.6046
| 18.2223
| 1
|
2016-03-18
| 7,604.350098
| 37.25264
| 19.6012
| 18.2209
| 1
|
π NIFTY 50 Market Regime Dataset
Dataset for training machine learning models to predict market regimes (RISK_ON/RISK_OFF) in Indian financial markets.
π Dataset Description
This dataset contains technical indicators and corresponding market regime labels for NIFTY 50, used to train binary classification models for regime prediction.
Market Regimes
- RISK_ON (1): Favorable market conditions - lower volatility, bullish momentum
- RISK_OFF (0): Cautious conditions - higher volatility, defensive positioning
π Features
| Feature | Type | Description | Range |
|---|---|---|---|
| india_vix | float | India VIX volatility index | 0-100+ |
| rsi_14 | float | 14-day Relative Strength Index | 0-100 |
| ma_50 | float | 50-day moving average | > 0 |
| ma_200 | float | 200-day moving average | > 0 |
| regime | int | Target label (0=RISK_OFF, 1=RISK_ON) | 0 or 1 |
Feature Descriptions
India VIX: Measures expected volatility in NIFTY 50
- Low values (< 15): Low fear, potentially RISK_ON
- High values (> 25): High fear, potentially RISK_OFF
RSI-14: Momentum indicator
- < 30: Oversold (potentially bullish)
70: Overbought (potentially bearish)
- 40-60: Neutral
MA-50: Short-term trend indicator
MA-200: Long-term trend indicator
π Statistics
Load the dataset to see:
- Total samples
- Class distribution (RISK_ON vs RISK_OFF)
- Feature correlations
- Summary statistics
π» Usage
Load with Pandas
import pandas as pd
# Load from local file
df = pd.read_csv("market_regime_data_nifty50.csv")
# View first few rows
print(df.head())
# Check class distribution
print(df['regime'].value_counts())
Load from Hugging Face
from datasets import load_dataset
# Load dataset
dataset = load_dataset("AAdevloper/nifty50-market-regime")
# Convert to pandas
df = dataset['train'].to_pandas()
Example Training Code
from sklearn.model_selection import train_test_split
from xgboost import XGBClassifier
# Prepare data
X = df[['india_vix', 'rsi_14', 'ma_50', 'ma_200']]
y = df['regime']
# Split
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=42, stratify=y
)
# Train
model = XGBClassifier(max_depth=6, learning_rate=0.1, n_estimators=100)
model.fit(X_train, y_train)
# Evaluate
score = model.score(X_test, y_test)
print(f"Accuracy: {score:.2%}")
π― Use Cases
- Market Regime Classification: Train models to predict current regime
- Trading Strategy Development: Use regime predictions for position sizing
- Risk Management: Adjust portfolio based on predicted regime
- Feature Engineering Research: Experiment with technical indicators
- MLOps Pipeline Development: Practice model deployment and monitoring
π§ Data Collection
The dataset includes:
- Historical technical indicators for NIFTY 50
- Calculated from OHLCV (Open, High, Low, Close, Volume) data
- Regime labels based on market behavior patterns
π Data Quality
- β No missing values
- β Features normalized/scaled appropriately
- β Balanced class distribution (or document imbalance)
- β No data leakage in feature engineering
- β Temporally consistent
ποΈ Related Projects
This dataset is part of a complete MLOps pipeline:
- Model: market-regime-classifier
- Live Demo: MLOps Finance Pipeline Space
- Source Code: GitHub Repository
π Citation
If you use this dataset, please cite:
@misc{nifty50_market_regime,
author = {AAdevloper},
title = {NIFTY 50 Market Regime Dataset},
year = {2025},
publisher = {Hugging Face},
howpublished = {\url{https://huggingface.co/datasets/AAdevloper/nifty50-market-regime}}
}
π License
MIT License - Free to use for research and commercial applications
Part of the MLOps Finance Pipeline project π
For questions or improvements, visit the GitHub repository
- Downloads last month
- 39