File size: 6,954 Bytes
d4f09e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7bbd60d
 
 
 
9e76891
 
 
 
 
 
 
 
 
 
 
 
7bbd60d
 
 
 
 
 
 
a714f11
 
 
7bbd60d
a714f11
 
7bbd60d
9e76891
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7bbd60d
 
 
 
 
098d5f4
7bbd60d
 
 
 
 
 
 
 
 
 
 
098d5f4
7bbd60d
 
 
9e76891
7bbd60d
9e76891
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7bbd60d
 
 
9e76891
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
473d0fa
 
 
9e76891
473d0fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
---
task_categories:
- object-detection
language:
- en
tags:
- soccer
- football
- player
- referee
- detection
- ball
- ultralytics
- yolov11
- tracking
pretty_name: Soccana_prb_v1
size_categories:
- 10K<n<100K
---

# ⚽ Soccer Object Detection Dataset (25K Subset from 1M+ Images)

---

## Index

1. [Dataset Overview](#dataset-overview)
2. [Folder Structure](#folder-structure)
3. [Dataset Preparation](#dataset-preparation)
4. [Data Utils](#data-utils)
5. [Samples](#samples)

## Dataset Overview

This dataset is a curated subset (25,000 images) from a larger soccer vision dataset containing over **1 million images** (50+ GB). The data was collected and augmented from multiple **open-source sources**, including the **SoccerNet dataset**, video game renders, and publicly available match footage.

It is optimized for **object detection tasks**, especially focusing on soccer-related entities such as **players**, **referees**, and the **ball**, including various augmentation types like background-only and noisy scenes.


- ✅ 25,000 images (~1.5GB)
- ✅ Annotations for 3 object classes:
  - `player`
  - `referee`
  - `ball`
- ✅ Data format:
  - **Ultralytics YOLO format** (default)
  - **COCO JSON format** (included in separate folders)
- ✅ Resolution variety:
  - `160x160`
  - `320x320`
  - `640x640`
  - `1280x1080` (Full HD)
- The dataset includes frames for various scenarios, such as:
  - Occlusions
  - Close up shots
  - Behind the goalpost scenes
  - Camera overlay scenes
  - Low and High angle shots
  - Low resolution shots
- ### Classes
  | Class ID | Label |
  | -------- | ------- |
  | 0 | Player |
  | 1 | Referee |
  | 2 | Ball |

In all, the dataset provides a apt starting point for an all rounder football object detection model.

---

## 🗂️ Folder Structure

```
V1/
├── images/
│ ├── train/
│ └── test/
├── labels/ # YOLO TXT labels
│ ├── train/
│ └── test/
├── coco_test_annotations/ # COCO format labels (train.json, val.json)
├── coco_train_annotations/ # COCO format labels (train.json, val.json)
├── data.yaml # Ultralytics YOLOv8-compatible YAML
└── samples/ # Dataset samples
```

---

## Dataset Preparation

### Processing Pipeline Architecture

```
Raw COCO Datasets

SAHI Slicing (160/320/640/1280)

Image Limit and Filtering

Class Name Standardization

COCO to YOLO Conversion

Final Training Dataset
```

### Raw COCO Datasets:
The following datasets were used for the raw images
1. **[Soccer Player Tracker](https://universe.roboflow.com/sac-wjhag/soccer-player-tracker)** (`spt_v2`)
2. **[Football Detection Test](https://universe.roboflow.com/projet-m2/test-fooball-detection-bis)** (`tbd_v2`)
3. **[VA Project](https://universe.roboflow.com/vaa/va_project-mp2xn)** (`v2_temp`)
4. **[Player Detection GKLRL](https://universe.roboflow.com/wisd-ckexz/player-detection-gklrl)** (`v12`)
5. **[Football EITPT](https://universe.roboflow.com/va-sah7v/football-eitpt)** (`v5_temp`)
6. **[Detect Players DGXZ0](https://universe.roboflow.com/nikhil-chapre-xgndf/detect-players-dgxz0)** (`v3`)
7. **[Football Player Detection KUCAB](https://universe.roboflow.com/augmented-startups/football-player-detection-kucab)** (`v7`)
8. **[Football Players Detection 3ZVBC](https://universe.roboflow.com/roboflow-jvuqo/football-players-detection-3zvbc)**


### SAHI slicing
SAHI (Slicing Aided Hyper Inference) is implemented to handle the multi-scale nature of soccer scenes:

**Why SAHI for Soccer?**
- **Crowded Scenes**: Penalty area situations with multiple overlapping players
- **Scale Variation**: Players appear at different sizes based on camera distance
- **Small Object Detection**: Ball detection in wide-angle shots
- **Context Preservation**: Maintains spatial relationships through overlapping

```python
slice_sizes = [160, 320, 640, 1280]  # Multiple scale processing
overlap_ratio = 0.2            # 20% overlap between patches
```

- **160x160 patches**: Optimized for small player detection and crowded scenes
- **320x320 patches**: Balanced approach for medium-distance shots  
- **640x640 patches**: Preserves context for tactical analysis and large-scale scenes
- **640x640 patches**: For best results in HD context


### Image Limit and Filtering
Due to SAHI, the resulting dataset had 1M+ images, and more than 30GB of data. Image filtering was applied from each dataset
```python
# Per-dataset image limits for balanced training
image_limits = {
    "spt_v2": 30, "spt_v2_sahi_160": 30, "spt_v2_sahi_320": 40,
    "tbd_v2": -1, "v2_temp": 300, "v2_temp_sahi_160": 300,
    "v2_temp_sahi_320": 400, "v3": 500, "v3_sahi_160": 500,
    "v3_sahi_320": 1000, "v3_sahi_640": 500, "v5_temp": 500,
    "v7": 500, "v7_sahi_160": 500, "v7_sahi_320": 1000,
    "v7_sahi_640": 500, "v12": 200, "v12_sahi_160": 300,
    "v12_sahi_320": 500, "v12_sahi_640": 300,
}
```


### Class name standardization
Every dataset had different classes, hence three common classes were taken out from each sub dataset
- **Player Variants**: Maps 'Player', 'Team-A', 'Team-H', 'football player', 'goalkeeper', 'Gardien', 'Joueur' → Class 0
- **Ball Variants**: Maps 'ball', 'Ball', 'Ballon', 'football' → Class 1  
- **Referee Variants**: Maps 'referee', 'Referee', 'Arbitre' → Class 2


### COCO to YOLO
the final COCO format dataset was converted to YOLO format fro ultralytics pipeline. Both the formats can be found in the zip file.

---

## Data Utils

### **Processing Scripts Location**

All dataset processing utilities are available in the **Data_utils** directory:

**🔗 Repository Link**: [https://github.com/Adit-jain/Soccer_Analysis/tree/main/Data_utils](https://github.com/Adit-jain/Soccer_Analysis/tree/main/Data_utils)

### **Key Utilities**

#### **External_Detections/**
- **`slice_images.py`**: SAHI-based multi-scale slicing
- **`merge_datasets.py`**: Multi-dataset integration with class mapping
- **`coco_to_yolo.py`**: Format conversion with coordinate normalization
- **`create_data_yaml.py`**: YOLO training configuration generation
- **`visualize_coco_dataset.py`**: Quality control and visualization

#### **SoccerNet_Detections/**
- **`get_soccernet_data.py`**: SoccerNet dataset downloading
- **`data_preprocessing.py`**: MOT to YOLO conversion pipeline

---


## Samples
<p align="center">
  <img src="samples/Figure_1.png" width="800"/>
  <img src="samples/Figure_2.png" width="800"/>
  <img src="samples/Figure_3.png" width="800"/>
</p>

<p align="center">
  <img src="samples/Figure_4.png" width="800"/>
  <img src="samples/Figure_5.png" width="800"/>
  <img src="samples/Figure_6.png" width="800"/>
</p>

<p align="center">
  <img src="samples/Figure_7.png" width="800"/>
  <img src="samples/Figure_8.png" width="800"/>
  <img src="samples/Figure_9.png" width="800"/>
</p>

<p align="center">
  <img src="samples/Figure_10.png" width="800"/>
</p>