File size: 17,406 Bytes
89922d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43416eb
e804dc0
 
 
 
 
 
 
 
cc452c6
 
 
 
 
 
 
 
289fd02
 
 
 
 
 
 
 
43416eb
 
 
 
 
 
 
 
 
d51ceb8
 
 
 
 
 
 
 
0556465
 
 
 
 
 
 
 
6a1d85a
 
 
 
 
 
 
 
2c2ab83
 
 
 
 
 
 
 
6503d29
 
 
 
 
 
 
 
82409ef
 
 
 
 
 
 
 
43416eb
e804dc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc452c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
289fd02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc452c6
43416eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d51ceb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0556465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a1d85a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c2ab83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6503d29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82409ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89922d6
 
4788cd2
89922d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4788cd2
 
89922d6
4788cd2
89922d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
---
annotations_creators:
- expert-generated
language_creators:
- found
license:
- cc-by-4.0
multilinguality:
- ar
- de
- ja
- hi
- pt
- en
- es
- it
- fr
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- question-answering
task_ids:
- open-domain-qa
paperswithcode_id: mintaka
pretty_name: Mintaka
language_bcp47:
- ar-SA
- de-DE
- ja-JP
- hi-HI
- pt-PT
- en-EN
- es-ES
- it-IT
- fr-FR
configs:
- config_name: all
  data_files:
  - split: train
    path: all/train-*
  - split: validation
    path: all/validation-*
  - split: test
    path: all/test-*
- config_name: ar
  data_files:
  - split: train
    path: ar/train-*
  - split: validation
    path: ar/validation-*
  - split: test
    path: ar/test-*
- config_name: de
  data_files:
  - split: train
    path: de/train-*
  - split: validation
    path: de/validation-*
  - split: test
    path: de/test-*
- config_name: en
  data_files:
  - split: train
    path: en/train-*
  - split: validation
    path: en/validation-*
  - split: test
    path: en/test-*
  default: true
- config_name: es
  data_files:
  - split: train
    path: es/train-*
  - split: validation
    path: es/validation-*
  - split: test
    path: es/test-*
- config_name: fr
  data_files:
  - split: train
    path: fr/train-*
  - split: validation
    path: fr/validation-*
  - split: test
    path: fr/test-*
- config_name: hi
  data_files:
  - split: train
    path: hi/train-*
  - split: validation
    path: hi/validation-*
  - split: test
    path: hi/test-*
- config_name: it
  data_files:
  - split: train
    path: it/train-*
  - split: validation
    path: it/validation-*
  - split: test
    path: it/test-*
- config_name: ja
  data_files:
  - split: train
    path: ja/train-*
  - split: validation
    path: ja/validation-*
  - split: test
    path: ja/test-*
- config_name: pt
  data_files:
  - split: train
    path: pt/train-*
  - split: validation
    path: pt/validation-*
  - split: test
    path: pt/test-*
dataset_info:
- config_name: all
  features:
  - name: id
    dtype: string
  - name: lang
    dtype: string
  - name: question
    dtype: string
  - name: answerText
    dtype: string
  - name: category
    dtype: string
  - name: complexityType
    dtype: string
  - name: questionEntity
    list:
    - name: name
      dtype: string
    - name: entityType
      dtype: string
    - name: label
      dtype: string
    - name: mention
      dtype: string
    - name: span
      list: int32
  - name: answerEntity
    list:
    - name: name
      dtype: string
    - name: label
      dtype: string
  splits:
  - name: train
    num_bytes: 32617518
    num_examples: 126000
  - name: validation
    num_bytes: 4693442
    num_examples: 18000
  - name: test
    num_bytes: 9305705
    num_examples: 36000
  download_size: 17797002
  dataset_size: 46616665
- config_name: ar
  features:
  - name: id
    dtype: string
  - name: lang
    dtype: string
  - name: question
    dtype: string
  - name: answerText
    dtype: string
  - name: category
    dtype: string
  - name: complexityType
    dtype: string
  - name: questionEntity
    list:
    - name: name
      dtype: string
    - name: entityType
      dtype: string
    - name: label
      dtype: string
    - name: mention
      dtype: string
    - name: span
      list: int32
  - name: answerEntity
    list:
    - name: name
      dtype: string
    - name: label
      dtype: string
  splits:
  - name: train
    num_bytes: 3880925
    num_examples: 14000
  - name: validation
    num_bytes: 559451
    num_examples: 2000
  - name: test
    num_bytes: 1105419
    num_examples: 4000
  download_size: 2073235
  dataset_size: 5545795
- config_name: de
  features:
  - name: id
    dtype: string
  - name: lang
    dtype: string
  - name: question
    dtype: string
  - name: answerText
    dtype: string
  - name: category
    dtype: string
  - name: complexityType
    dtype: string
  - name: questionEntity
    list:
    - name: name
      dtype: string
    - name: entityType
      dtype: string
    - name: label
      dtype: string
    - name: mention
      dtype: string
    - name: span
      list: int32
  - name: answerEntity
    list:
    - name: name
      dtype: string
    - name: label
      dtype: string
  splits:
  - name: train
    num_bytes: 3356063
    num_examples: 14000
  - name: validation
    num_bytes: 481954
    num_examples: 2000
  - name: test
    num_bytes: 956485
    num_examples: 4000
  download_size: 1897328
  dataset_size: 4794502
- config_name: en
  features:
  - name: id
    dtype: string
  - name: lang
    dtype: string
  - name: question
    dtype: string
  - name: answerText
    dtype: string
  - name: category
    dtype: string
  - name: complexityType
    dtype: string
  - name: questionEntity
    list:
    - name: name
      dtype: string
    - name: entityType
      dtype: string
    - name: label
      dtype: string
    - name: mention
      dtype: string
    - name: span
      list: int32
  - name: answerEntity
    list:
    - name: name
      dtype: string
    - name: label
      dtype: string
  splits:
  - name: train
    num_bytes: 3713651
    num_examples: 14000
  - name: validation
    num_bytes: 533751
    num_examples: 2000
  - name: test
    num_bytes: 1057790
    num_examples: 4000
  download_size: 2147987
  dataset_size: 5305192
- config_name: es
  features:
  - name: id
    dtype: string
  - name: lang
    dtype: string
  - name: question
    dtype: string
  - name: answerText
    dtype: string
  - name: category
    dtype: string
  - name: complexityType
    dtype: string
  - name: questionEntity
    list:
    - name: name
      dtype: string
    - name: entityType
      dtype: string
    - name: label
      dtype: string
    - name: mention
      dtype: string
    - name: span
      list: int32
  - name: answerEntity
    list:
    - name: name
      dtype: string
    - name: label
      dtype: string
  splits:
  - name: train
    num_bytes: 3370323
    num_examples: 14000
  - name: validation
    num_bytes: 485203
    num_examples: 2000
  - name: test
    num_bytes: 961828
    num_examples: 4000
  download_size: 1888205
  dataset_size: 4817354
- config_name: fr
  features:
  - name: id
    dtype: string
  - name: lang
    dtype: string
  - name: question
    dtype: string
  - name: answerText
    dtype: string
  - name: category
    dtype: string
  - name: complexityType
    dtype: string
  - name: questionEntity
    list:
    - name: name
      dtype: string
    - name: entityType
      dtype: string
    - name: label
      dtype: string
    - name: mention
      dtype: string
    - name: span
      list: int32
  - name: answerEntity
    list:
    - name: name
      dtype: string
    - name: label
      dtype: string
  splits:
  - name: train
    num_bytes: 3442616
    num_examples: 14000
  - name: validation
    num_bytes: 494627
    num_examples: 2000
  - name: test
    num_bytes: 981861
    num_examples: 4000
  download_size: 1928896
  dataset_size: 4919104
- config_name: hi
  features:
  - name: id
    dtype: string
  - name: lang
    dtype: string
  - name: question
    dtype: string
  - name: answerText
    dtype: string
  - name: category
    dtype: string
  - name: complexityType
    dtype: string
  - name: questionEntity
    list:
    - name: name
      dtype: string
    - name: entityType
      dtype: string
    - name: label
      dtype: string
    - name: mention
      dtype: string
    - name: span
      list: int32
  - name: answerEntity
    list:
    - name: name
      dtype: string
    - name: label
      dtype: string
  splits:
  - name: train
    num_bytes: 4491931
    num_examples: 14000
  - name: validation
    num_bytes: 647607
    num_examples: 2000
  - name: test
    num_bytes: 1282203
    num_examples: 4000
  download_size: 2176682
  dataset_size: 6421741
- config_name: it
  features:
  - name: id
    dtype: string
  - name: lang
    dtype: string
  - name: question
    dtype: string
  - name: answerText
    dtype: string
  - name: category
    dtype: string
  - name: complexityType
    dtype: string
  - name: questionEntity
    list:
    - name: name
      dtype: string
    - name: entityType
      dtype: string
    - name: label
      dtype: string
    - name: mention
      dtype: string
    - name: span
      list: int32
  - name: answerEntity
    list:
    - name: name
      dtype: string
    - name: label
      dtype: string
  splits:
  - name: train
    num_bytes: 3325824
    num_examples: 14000
  - name: validation
    num_bytes: 478224
    num_examples: 2000
  - name: test
    num_bytes: 950678
    num_examples: 4000
  download_size: 1881299
  dataset_size: 4754726
- config_name: ja
  features:
  - name: id
    dtype: string
  - name: lang
    dtype: string
  - name: question
    dtype: string
  - name: answerText
    dtype: string
  - name: category
    dtype: string
  - name: complexityType
    dtype: string
  - name: questionEntity
    list:
    - name: name
      dtype: string
    - name: entityType
      dtype: string
    - name: label
      dtype: string
    - name: mention
      dtype: string
    - name: span
      list: int32
  - name: answerEntity
    list:
    - name: name
      dtype: string
    - name: label
      dtype: string
  splits:
  - name: train
    num_bytes: 3753173
    num_examples: 14000
  - name: validation
    num_bytes: 540236
    num_examples: 2000
  - name: test
    num_bytes: 1072950
    num_examples: 4000
  download_size: 2032694
  dataset_size: 5366359
- config_name: pt
  features:
  - name: id
    dtype: string
  - name: lang
    dtype: string
  - name: question
    dtype: string
  - name: answerText
    dtype: string
  - name: category
    dtype: string
  - name: complexityType
    dtype: string
  - name: questionEntity
    list:
    - name: name
      dtype: string
    - name: entityType
      dtype: string
    - name: label
      dtype: string
    - name: mention
      dtype: string
    - name: span
      list: int32
  - name: answerEntity
    list:
    - name: name
      dtype: string
    - name: label
      dtype: string
  splits:
  - name: train
    num_bytes: 3283012
    num_examples: 14000
  - name: validation
    num_bytes: 472389
    num_examples: 2000
  - name: test
    num_bytes: 936491
    num_examples: 4000
  download_size: 1851000
  dataset_size: 4691892
---

# Mintaka: A Complex, Natural, and Multilingual Dataset for End-to-End Question Answering

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description
- **Homepage:** https://github.com/amazon-science/mintaka
- **Repository:** https://github.com/amazon-science/mintaka
- **Paper:** https://aclanthology.org/2022.coling-1.138/
- **Point of Contact:** [GitHub](https://github.com/amazon-science/mintaka)

### Dataset Summary

Mintaka is a complex, natural, and multilingual question answering (QA) dataset composed of 20,000 question-answer pairs elicited from MTurk workers and annotated with Wikidata question and answer entities. Full details on the Mintaka dataset can be found in our paper: https://aclanthology.org/2022.coling-1.138/

To build Mintaka, we explicitly collected questions in 8 complexity types, as well as generic questions:

- Count (e.g., Q: How many astronauts have been elected to Congress? A: 4)
- Comparative (e.g., Q: Is Mont Blanc taller than Mount Rainier? A: Yes)
- Superlative (e.g., Q: Who was the youngest tribute in the Hunger Games? A: Rue)
- Ordinal (e.g., Q: Who was the last Ptolemaic ruler of Egypt? A: Cleopatra)
- Multi-hop (e.g., Q: Who was the quarterback of the team that won Super Bowl 50? A: Peyton Manning)
- Intersection (e.g., Q: Which movie was directed by Denis Villeneuve and stars Timothee Chalamet? A: Dune)
- Difference (e.g., Q: Which Mario Kart game did Yoshi not appear in? A: Mario Kart Live: Home Circuit)
- Yes/No (e.g., Q: Has Lady Gaga ever made a song with Ariana Grande? A: Yes.)
- Generic (e.g., Q: Where was Michael Phelps born? A: Baltimore, Maryland)
- We collected questions about 8 categories: Movies, Music, Sports, Books, Geography, Politics, Video Games, and History

Mintaka is one of the first large-scale complex, natural, and multilingual datasets that can be used for end-to-end question-answering models.

### Supported Tasks and Leaderboards

The dataset can be used to train a model for question answering.
To ensure comparability, please refer to our evaluation script here: https://github.com/amazon-science/mintaka#evaluation

### Languages

All questions were written in English and translated into 8 additional languages: Arabic, French, German, Hindi, Italian, Japanese, Portuguese, and Spanish.

## Dataset Structure

### Data Instances

An example of 'train' looks as follows.

```json
{
  "id": "a9011ddf",
  "lang": "en",
  "question": "What is the seventh tallest mountain in North America?",
  "answerText": "Mount Lucania",
  "category": "geography",
  "complexityType": "ordinal",
  "questionEntity":
  [
      {
          "name": "Q49",
          "entityType": "entity",
          "label": "North America",
          "mention": "North America",
          "span": [40, 53]
      },
      {
          "name": 7,
          "entityType": "ordinal",
          "mention": "seventh",
          "span": [12, 19]
      }
  ],
  "answerEntity":
  [
      {
          "name": "Q1153188",
          "label": "Mount Lucania",
      }
  ],
}
```

### Data Fields

The data fields are the same among all splits.

`id`: a unique ID for the given sample.

`lang`: the language of the question. 

`question`: the original question elicited in the corresponding language.

`answerText`: the original answer text elicited in English.

`category`: the category of the question. Options are: geography, movies, history, books, politics, music, videogames, or sports

`complexityType`: the complexity type of the question. Options are: ordinal, intersection, count, superlative, yesno comparative, multihop, difference, or generic

`questionEntity`:  a list of annotated question entities identified by crowd workers.
```
{
     "name": The Wikidata Q-code or numerical value of the entity
     "entityType": The type of the entity. Options are:
             entity, cardinal, ordinal, date, time, percent, quantity, or money
     "label": The label of the Wikidata Q-code
     "mention": The entity as it appears in the English question text. Will be empty for non-English samples.
     "span": The start and end characters of the mention in the English question text. Will be empty for non-English samples.
}
```
`answerEntity`:  a list of annotated answer entities identified by crowd workers.
```
{
     "name": The Wikidata Q-code or numerical value of the entity
     "label": The label of the Wikidata Q-code
}
```

### Data Splits

For each language, we split into train (14,000 samples), dev (2,000 samples), and test (4,000 samples) sets.

### Personal and Sensitive Information

The corpora is free of personal or sensitive information.

## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Additional Information

### Dataset Curators

Amazon Alexa AI.

### Licensing Information

This project is licensed under the CC-BY-4.0 License.

### Citation Information

Please cite the following papers when using this dataset.

```latex
@inproceedings{sen-etal-2022-mintaka,
    title = "Mintaka: A Complex, Natural, and Multilingual Dataset for End-to-End Question Answering",
    author = "Sen, Priyanka  and
      Aji, Alham Fikri  and
      Saffari, Amir",
    booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
    month = oct,
    year = "2022",
    address = "Gyeongju, Republic of Korea",
    publisher = "International Committee on Computational Linguistics",
    url = "https://aclanthology.org/2022.coling-1.138",
    pages = "1604--1619"
}
```

### Contributions

Thanks to [@afaji](https://github.com/afaji) for adding this dataset.