Datasets:
File size: 17,406 Bytes
89922d6 43416eb e804dc0 cc452c6 289fd02 43416eb d51ceb8 0556465 6a1d85a 2c2ab83 6503d29 82409ef 43416eb e804dc0 cc452c6 289fd02 cc452c6 43416eb d51ceb8 0556465 6a1d85a 2c2ab83 6503d29 82409ef 89922d6 4788cd2 89922d6 4788cd2 89922d6 4788cd2 89922d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 |
---
annotations_creators:
- expert-generated
language_creators:
- found
license:
- cc-by-4.0
multilinguality:
- ar
- de
- ja
- hi
- pt
- en
- es
- it
- fr
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- question-answering
task_ids:
- open-domain-qa
paperswithcode_id: mintaka
pretty_name: Mintaka
language_bcp47:
- ar-SA
- de-DE
- ja-JP
- hi-HI
- pt-PT
- en-EN
- es-ES
- it-IT
- fr-FR
configs:
- config_name: all
data_files:
- split: train
path: all/train-*
- split: validation
path: all/validation-*
- split: test
path: all/test-*
- config_name: ar
data_files:
- split: train
path: ar/train-*
- split: validation
path: ar/validation-*
- split: test
path: ar/test-*
- config_name: de
data_files:
- split: train
path: de/train-*
- split: validation
path: de/validation-*
- split: test
path: de/test-*
- config_name: en
data_files:
- split: train
path: en/train-*
- split: validation
path: en/validation-*
- split: test
path: en/test-*
default: true
- config_name: es
data_files:
- split: train
path: es/train-*
- split: validation
path: es/validation-*
- split: test
path: es/test-*
- config_name: fr
data_files:
- split: train
path: fr/train-*
- split: validation
path: fr/validation-*
- split: test
path: fr/test-*
- config_name: hi
data_files:
- split: train
path: hi/train-*
- split: validation
path: hi/validation-*
- split: test
path: hi/test-*
- config_name: it
data_files:
- split: train
path: it/train-*
- split: validation
path: it/validation-*
- split: test
path: it/test-*
- config_name: ja
data_files:
- split: train
path: ja/train-*
- split: validation
path: ja/validation-*
- split: test
path: ja/test-*
- config_name: pt
data_files:
- split: train
path: pt/train-*
- split: validation
path: pt/validation-*
- split: test
path: pt/test-*
dataset_info:
- config_name: all
features:
- name: id
dtype: string
- name: lang
dtype: string
- name: question
dtype: string
- name: answerText
dtype: string
- name: category
dtype: string
- name: complexityType
dtype: string
- name: questionEntity
list:
- name: name
dtype: string
- name: entityType
dtype: string
- name: label
dtype: string
- name: mention
dtype: string
- name: span
list: int32
- name: answerEntity
list:
- name: name
dtype: string
- name: label
dtype: string
splits:
- name: train
num_bytes: 32617518
num_examples: 126000
- name: validation
num_bytes: 4693442
num_examples: 18000
- name: test
num_bytes: 9305705
num_examples: 36000
download_size: 17797002
dataset_size: 46616665
- config_name: ar
features:
- name: id
dtype: string
- name: lang
dtype: string
- name: question
dtype: string
- name: answerText
dtype: string
- name: category
dtype: string
- name: complexityType
dtype: string
- name: questionEntity
list:
- name: name
dtype: string
- name: entityType
dtype: string
- name: label
dtype: string
- name: mention
dtype: string
- name: span
list: int32
- name: answerEntity
list:
- name: name
dtype: string
- name: label
dtype: string
splits:
- name: train
num_bytes: 3880925
num_examples: 14000
- name: validation
num_bytes: 559451
num_examples: 2000
- name: test
num_bytes: 1105419
num_examples: 4000
download_size: 2073235
dataset_size: 5545795
- config_name: de
features:
- name: id
dtype: string
- name: lang
dtype: string
- name: question
dtype: string
- name: answerText
dtype: string
- name: category
dtype: string
- name: complexityType
dtype: string
- name: questionEntity
list:
- name: name
dtype: string
- name: entityType
dtype: string
- name: label
dtype: string
- name: mention
dtype: string
- name: span
list: int32
- name: answerEntity
list:
- name: name
dtype: string
- name: label
dtype: string
splits:
- name: train
num_bytes: 3356063
num_examples: 14000
- name: validation
num_bytes: 481954
num_examples: 2000
- name: test
num_bytes: 956485
num_examples: 4000
download_size: 1897328
dataset_size: 4794502
- config_name: en
features:
- name: id
dtype: string
- name: lang
dtype: string
- name: question
dtype: string
- name: answerText
dtype: string
- name: category
dtype: string
- name: complexityType
dtype: string
- name: questionEntity
list:
- name: name
dtype: string
- name: entityType
dtype: string
- name: label
dtype: string
- name: mention
dtype: string
- name: span
list: int32
- name: answerEntity
list:
- name: name
dtype: string
- name: label
dtype: string
splits:
- name: train
num_bytes: 3713651
num_examples: 14000
- name: validation
num_bytes: 533751
num_examples: 2000
- name: test
num_bytes: 1057790
num_examples: 4000
download_size: 2147987
dataset_size: 5305192
- config_name: es
features:
- name: id
dtype: string
- name: lang
dtype: string
- name: question
dtype: string
- name: answerText
dtype: string
- name: category
dtype: string
- name: complexityType
dtype: string
- name: questionEntity
list:
- name: name
dtype: string
- name: entityType
dtype: string
- name: label
dtype: string
- name: mention
dtype: string
- name: span
list: int32
- name: answerEntity
list:
- name: name
dtype: string
- name: label
dtype: string
splits:
- name: train
num_bytes: 3370323
num_examples: 14000
- name: validation
num_bytes: 485203
num_examples: 2000
- name: test
num_bytes: 961828
num_examples: 4000
download_size: 1888205
dataset_size: 4817354
- config_name: fr
features:
- name: id
dtype: string
- name: lang
dtype: string
- name: question
dtype: string
- name: answerText
dtype: string
- name: category
dtype: string
- name: complexityType
dtype: string
- name: questionEntity
list:
- name: name
dtype: string
- name: entityType
dtype: string
- name: label
dtype: string
- name: mention
dtype: string
- name: span
list: int32
- name: answerEntity
list:
- name: name
dtype: string
- name: label
dtype: string
splits:
- name: train
num_bytes: 3442616
num_examples: 14000
- name: validation
num_bytes: 494627
num_examples: 2000
- name: test
num_bytes: 981861
num_examples: 4000
download_size: 1928896
dataset_size: 4919104
- config_name: hi
features:
- name: id
dtype: string
- name: lang
dtype: string
- name: question
dtype: string
- name: answerText
dtype: string
- name: category
dtype: string
- name: complexityType
dtype: string
- name: questionEntity
list:
- name: name
dtype: string
- name: entityType
dtype: string
- name: label
dtype: string
- name: mention
dtype: string
- name: span
list: int32
- name: answerEntity
list:
- name: name
dtype: string
- name: label
dtype: string
splits:
- name: train
num_bytes: 4491931
num_examples: 14000
- name: validation
num_bytes: 647607
num_examples: 2000
- name: test
num_bytes: 1282203
num_examples: 4000
download_size: 2176682
dataset_size: 6421741
- config_name: it
features:
- name: id
dtype: string
- name: lang
dtype: string
- name: question
dtype: string
- name: answerText
dtype: string
- name: category
dtype: string
- name: complexityType
dtype: string
- name: questionEntity
list:
- name: name
dtype: string
- name: entityType
dtype: string
- name: label
dtype: string
- name: mention
dtype: string
- name: span
list: int32
- name: answerEntity
list:
- name: name
dtype: string
- name: label
dtype: string
splits:
- name: train
num_bytes: 3325824
num_examples: 14000
- name: validation
num_bytes: 478224
num_examples: 2000
- name: test
num_bytes: 950678
num_examples: 4000
download_size: 1881299
dataset_size: 4754726
- config_name: ja
features:
- name: id
dtype: string
- name: lang
dtype: string
- name: question
dtype: string
- name: answerText
dtype: string
- name: category
dtype: string
- name: complexityType
dtype: string
- name: questionEntity
list:
- name: name
dtype: string
- name: entityType
dtype: string
- name: label
dtype: string
- name: mention
dtype: string
- name: span
list: int32
- name: answerEntity
list:
- name: name
dtype: string
- name: label
dtype: string
splits:
- name: train
num_bytes: 3753173
num_examples: 14000
- name: validation
num_bytes: 540236
num_examples: 2000
- name: test
num_bytes: 1072950
num_examples: 4000
download_size: 2032694
dataset_size: 5366359
- config_name: pt
features:
- name: id
dtype: string
- name: lang
dtype: string
- name: question
dtype: string
- name: answerText
dtype: string
- name: category
dtype: string
- name: complexityType
dtype: string
- name: questionEntity
list:
- name: name
dtype: string
- name: entityType
dtype: string
- name: label
dtype: string
- name: mention
dtype: string
- name: span
list: int32
- name: answerEntity
list:
- name: name
dtype: string
- name: label
dtype: string
splits:
- name: train
num_bytes: 3283012
num_examples: 14000
- name: validation
num_bytes: 472389
num_examples: 2000
- name: test
num_bytes: 936491
num_examples: 4000
download_size: 1851000
dataset_size: 4691892
---
# Mintaka: A Complex, Natural, and Multilingual Dataset for End-to-End Question Answering
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://github.com/amazon-science/mintaka
- **Repository:** https://github.com/amazon-science/mintaka
- **Paper:** https://aclanthology.org/2022.coling-1.138/
- **Point of Contact:** [GitHub](https://github.com/amazon-science/mintaka)
### Dataset Summary
Mintaka is a complex, natural, and multilingual question answering (QA) dataset composed of 20,000 question-answer pairs elicited from MTurk workers and annotated with Wikidata question and answer entities. Full details on the Mintaka dataset can be found in our paper: https://aclanthology.org/2022.coling-1.138/
To build Mintaka, we explicitly collected questions in 8 complexity types, as well as generic questions:
- Count (e.g., Q: How many astronauts have been elected to Congress? A: 4)
- Comparative (e.g., Q: Is Mont Blanc taller than Mount Rainier? A: Yes)
- Superlative (e.g., Q: Who was the youngest tribute in the Hunger Games? A: Rue)
- Ordinal (e.g., Q: Who was the last Ptolemaic ruler of Egypt? A: Cleopatra)
- Multi-hop (e.g., Q: Who was the quarterback of the team that won Super Bowl 50? A: Peyton Manning)
- Intersection (e.g., Q: Which movie was directed by Denis Villeneuve and stars Timothee Chalamet? A: Dune)
- Difference (e.g., Q: Which Mario Kart game did Yoshi not appear in? A: Mario Kart Live: Home Circuit)
- Yes/No (e.g., Q: Has Lady Gaga ever made a song with Ariana Grande? A: Yes.)
- Generic (e.g., Q: Where was Michael Phelps born? A: Baltimore, Maryland)
- We collected questions about 8 categories: Movies, Music, Sports, Books, Geography, Politics, Video Games, and History
Mintaka is one of the first large-scale complex, natural, and multilingual datasets that can be used for end-to-end question-answering models.
### Supported Tasks and Leaderboards
The dataset can be used to train a model for question answering.
To ensure comparability, please refer to our evaluation script here: https://github.com/amazon-science/mintaka#evaluation
### Languages
All questions were written in English and translated into 8 additional languages: Arabic, French, German, Hindi, Italian, Japanese, Portuguese, and Spanish.
## Dataset Structure
### Data Instances
An example of 'train' looks as follows.
```json
{
"id": "a9011ddf",
"lang": "en",
"question": "What is the seventh tallest mountain in North America?",
"answerText": "Mount Lucania",
"category": "geography",
"complexityType": "ordinal",
"questionEntity":
[
{
"name": "Q49",
"entityType": "entity",
"label": "North America",
"mention": "North America",
"span": [40, 53]
},
{
"name": 7,
"entityType": "ordinal",
"mention": "seventh",
"span": [12, 19]
}
],
"answerEntity":
[
{
"name": "Q1153188",
"label": "Mount Lucania",
}
],
}
```
### Data Fields
The data fields are the same among all splits.
`id`: a unique ID for the given sample.
`lang`: the language of the question.
`question`: the original question elicited in the corresponding language.
`answerText`: the original answer text elicited in English.
`category`: the category of the question. Options are: geography, movies, history, books, politics, music, videogames, or sports
`complexityType`: the complexity type of the question. Options are: ordinal, intersection, count, superlative, yesno comparative, multihop, difference, or generic
`questionEntity`: a list of annotated question entities identified by crowd workers.
```
{
"name": The Wikidata Q-code or numerical value of the entity
"entityType": The type of the entity. Options are:
entity, cardinal, ordinal, date, time, percent, quantity, or money
"label": The label of the Wikidata Q-code
"mention": The entity as it appears in the English question text. Will be empty for non-English samples.
"span": The start and end characters of the mention in the English question text. Will be empty for non-English samples.
}
```
`answerEntity`: a list of annotated answer entities identified by crowd workers.
```
{
"name": The Wikidata Q-code or numerical value of the entity
"label": The label of the Wikidata Q-code
}
```
### Data Splits
For each language, we split into train (14,000 samples), dev (2,000 samples), and test (4,000 samples) sets.
### Personal and Sensitive Information
The corpora is free of personal or sensitive information.
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
Amazon Alexa AI.
### Licensing Information
This project is licensed under the CC-BY-4.0 License.
### Citation Information
Please cite the following papers when using this dataset.
```latex
@inproceedings{sen-etal-2022-mintaka,
title = "Mintaka: A Complex, Natural, and Multilingual Dataset for End-to-End Question Answering",
author = "Sen, Priyanka and
Aji, Alham Fikri and
Saffari, Amir",
booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
month = oct,
year = "2022",
address = "Gyeongju, Republic of Korea",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2022.coling-1.138",
pages = "1604--1619"
}
```
### Contributions
Thanks to [@afaji](https://github.com/afaji) for adding this dataset. |